
1 INTRODUCTION

1.1 Notations

∀ For all
⊥ Orthogonal
6= Not Equal
⊂ Is a proper subset of
⊆ Subset (may be the same)
∈ Belongs to
x̄ complex conjugate of x
∃ There exists
∃! There exists a unique
3 Such that
s.t. Such that
∪ Union
∩ Intersection
⇒ Implies
⇔ If and only if
iff If and only if
⊕ Direct sum of subspaces
⊥
⊕ Direct sum of orthogonal subspaces
4
= Definition
R Real line (number)
R+ Positive real line (numbers)
C Complex scalars
Rn Space of n-vectors, each entry in R
Cn Space of n-vectors, each entry in C
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1.2 Brief Introduction

This hand-out is an attempt to cover the material needed in the class. It is
meant to be used as your primary source of information. Together with the
references, it should give you a good start to your pursuit of research topics in
the controls area. As far as overview is concerned (!) we will be following a
rather strange path that connects the old fashioned SISO (single input single
output) control techniques to the modern control techniques you have seen by
now.

Classical control techniques were immensely powerful. To this date, it is
unlikely (but not impossible!) that a new graduate student with lots of new
‘modern’ tricks can do a better job designing a control law for a SISO system
(of low to moderate order), than an engineer who has a few years of experience
with Bode and Nyquist plots, Bode integrals, etc. Admittedly, new techniques
have given a few new wrinkles in the analysis part, but not much can be said
about the synthesis part.

The problem encountered since the 60’s are: Large order systems (which
make transfer functions hard to deal with), MIMO settings and the notation of
explicit parameter variation (or structured uncertainties). All of these could be
handled (to varying degrees of success) with modern (a.k.a., state space based)
methods. This was the main focus of work in the 60’s and early 70’s.

In the late 70’s, people noticed that the ‘down side’ of using these new
methods was loss or degradation of some of the classical (and critical) properties
of control systems. Since then, there has been a great deal of attention paid to
bridging these two approaches in an attempt to address all of the new and old
concerns.

It all started in the LQR and LQG setting (later called H2 for marketing
purposes) which eventually lead to the world famous H∞ framework. More
recently, the H∞ framework has been used to develop results for a variety of
more difficult problems; such as time varying problems, multi-objective prob-
lems, hybrid systems etc. The real breakthrough, though, is recent development
of powerful numerical tools for finding solution to convex searches (e.g., via the
LMI toolbox of MATLAB!!). This has allowed a large number of problems be
solved numerically, even though closed form solutions are not apparent. In order
to appreciate this progress however, a load of basic results from linear algebra
and control theory is needed. We start with the basic stuff for quite a few weeks,
so that we can spend the last 3 weeks or so on the new results.

Please read carefully and report any typos (for which I accept no responsi-
bility!) to the authorities.
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2 PRELIMINARIES

2.1 Norms, inner products, etc.

Definition 2.1. A real scalar valued function, ‖.‖, is a norm if it satisfies three
properties:

• ‖x‖ ≥ 0, and ‖x‖ = 0 iff x = 0

• ‖αx‖ = |α| ‖x‖, ∀ α ∈ C
• ‖x + y‖ ≤ ‖x‖ + ‖y‖ (Triangle inequality)

Definition 2.2. A complex valued function, 〈., .〉, is an inner product if it
satisfies the following basic properties:

• 〈x, y〉 = 〈y, x〉
• 〈αx, (β1y1 + β2y2)〉 = α β1〈x, y1〉 + α β2〈x, y2〉 ∀ α , β1 , β2 ∈ C
• 〈x, x〉 ≥ 0, and 〈x, x〉 = 0 iff x = 0

Remark 2.3. A very common norm is the one based on the inner product; i.e.

‖x‖2 = 〈x, x〉 (2.1)

Definition 2.4. Two vectors are orthogonal if their inner product is zero; i.e.,

〈x, y〉 = 0 ⇔ x ⊥ y.

Furthermore, two subspaces are orthogonal to each other if any vector from one
is orthogonal to any vector from the other; i.e.,

X ⊥ Y ⇔ 〈x, y〉 = 0 ∀ x ∈ X and ∀ y ∈ Y.

Example 2.5. For vectors in Cn, the following are all norms:

‖x‖1 =
n∑

i=1

|xi|

‖x‖2 = (
n∑

i=1

|xi|2 )
1
2

‖x‖∞ = max
i

{|xi|}

where xi is the ith entry of vector x.
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Example 2.6. Consider scalar functions of time defined for t ∈ [0, T ]. We can
define the following norms

‖x(.)‖1 =
∫ T

0

|x(t)| dt

‖x(.)‖2 = (
∫ T

0

|x(t)|2 dt )
1
2

‖x(.)‖∞ = max
T≥t≥0

{|x(t)|}

Example 2.7. For vectors in Cn, or Rn, the following are all proper inner
products

〈x, y〉 = xT y

〈x, y〉M = xT My, for some M > 0 (positive definite)

Example 2.8. Consider scalar and continuous functions x(t) and y(t) defined
for t ∈ [0, T ]. We can define the following inner product

〈x, y〉L2 =
∫ T

0

x(t) y(t) dt

and, indeed, x(t) and y(t) can be n-vector as well!
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2.2 Linear Operators

Consider two vector spaces X and Y (e.g., Rn and Rm, but it could be more
complicated and general). A function T that sends every vector x ∈ X to a
vector y = Tx ∈ Y is called a linear operator (or linear transformation) on - or
from - X to Y if it preserves linear relations; that is if

T (a1x1 + a2x2) = a1Tx1 + a2Tx2

for all x1, and x2 in X , as well as all scalars a1 and a2. We often use the notation
T : X → Y. Matrices, derivatives, integrals, are examples of linear operators
(what are X , Y, x, etc in each case?).

So such a T can be considered an operator. It can also be considered an
element (vector) of a large collection of operators that share the main properties
(i.e., linear operators from X to Y). The big set or collection of these operators
actually is a linear vector space itself (why?), often denoted by L(X ,Y). So T
can be considers a vector in L(X ,Y) as well, for which a vector norm can be
obtained as well!

Example 2.9. Every matrix is a linear operator (work all details)

Example 2.10. The operation d
dt is a linear operator (y = ẋ = Lx). Note that

clearly we have x from the space of continuous function while y may not be.
Similarly, simple integrals are linear operators.

Since linear operators are elements of sets (i.e., vectors in subspaces), one
can define vector norms (or metric) for them. As an example, consider matrices
that are m × n: a common vector norm for this matrix is

‖A‖F = (
∑

i

∑
j

|ai,j |2 ).5

where ai,j is the (i,j) element of the matrix A. This norm, often called the
Frobenius norm, may indicate the ‘size’ of a given matrix compared to other
matrices.

A more interesting, and useful, way to ‘size’ a linear operator is by examining
what it does to the vectors it operates on. We define the operator norm for the
space of linear operators (i.e, L).

Definition 2.11. The operator norm, or the induced norm, of an operator A
is the supremum of the ratio of ‖Ax‖ to ‖x‖, over all non zero x; i.e.

‖A‖i = sup
x�=0

‖Ax‖
‖x‖

where the subscript i is often used to emphasize the fact that the induced norm
is used. When clear from the context, this subscript is dropped.
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Remark 2.12. The norms in the fraction are vectors norm, from potentially
different spaces. While they are often the same; e.g., both are 2-norms, they
could be mixed. A common example is energy to peak norm; i.e., ‖Ax‖∞

‖x‖2
which

measures the worst peak per unit of input energy.

Remark 2.13. The form used in definition 2.11 also applies to nonlinear op-
erators and is used in many nonlinear analysis problems. For the linear case,
we can also use sup‖x‖=1 ‖Ax‖.
Remark 2.14. ‘Sup’ is the lowest upper bound. When it is achieved, it is ‘max’
(which is 99% of problems!). To calculate the induced norm, a three step process
is followed: (1) Come up with an estimate (guess), (2) show it is a legitimate
upper bound (i.e., bigger that the ratio for all possible x), and (3) show that with
a clever choice of x, one can either achieve it or get arbitrarily close to it.

Example 2.15. For m × n matrices, we have

sup
x�=0

‖Ax‖1

‖x‖1
= max

j

m∑
i=1

|ai,j |

sup
x�=0

‖Ax‖2

‖x‖2
= [λmax(ĀT A) ]

1
2

sup
x�=0

‖Ax‖∞
‖x‖∞ = max

i

n∑
j=1

|ai,j |

Before we leave this subsection, it is useful to review the concept of adjoint
operator.

Definition 2.16. Consider the linear operator A from X to Y, with inner
products 〈., .〉x and 〈., .〉y defined on X and Y, respectively. Then the adjoint
operator A∗ is defined by the operator that satisfies the following

〈Ax, y〉y = 〈x,A∗y〉x ∀ x ∈ X , y ∈ Y.

Example 2.17. The simplest case to consider would be A in the space of real
matrices of dimension m × n with basic l2 inner product on both Rn and Rm.
It that case, A∗ = AT . What if the inner product was 〈x, y〉 = xT My, for some
M > 0? (show that A∗ = M−1AT M).
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2.3 Orthogonal Projection

Let v1, v2, . . ., vm be in H. Define Hm to be the span of these vectors (i.e.,
all possible linear combination of vi’s). For a vector x ∈ H, its orthogonal
projection onto the span of vi’s is defined as the vector x̂ ∈ Hm such that
one of the following (equivalent) properties holds: (1) the error (i.e., x − x̂) is
orthogonal to Hm, and (2) among all possible vectors in Hm, x̂ is the one that
minimizes the norm of the error (i.e., ‖x − x̂‖ is minimized).

In the discussion above, orthogonality is defined by having the inner product
to be zero and the definition of the norm used here is the square root of the inner
product of a vector by itself (i.e., (2.1)). As a result, everything here depends
on the specific definition of the inner product used.

Solution: Since x̂ ∈ Hm, it must be a combination of vi’s. Therefore

x̂ = a1v1 + a2v2 + · · · + amvm (2.2)

for some set of ai’s. We are looking for the set of ai’s that result in x̂ becoming
the orthogonal projection. We will use the first property: For each vi we must
have

〈vi, x − x̂〉 = 0 ⇒ 〈vi, x̂〉 = 〈vi, x〉.
Using (2.2) for x̂ on the left hand side, we get

〈vi, a1v1〉 + 〈vi, a2v2〉 + · · · 〈vi, amvm〉 = 〈vi, x〉. (2.3)

As a result, we have m equations of the form in (2.3), for v1, v2, · · · vm.
These m-linear equations can be solved for the unknowns, ai’s. Stacking these
m equations on top of one another, we can form a matrix equation of the form

Aa = b

where A is a matrix whose (i,j) entry is 〈vi, vj〉, a is the vector of ai’s, and b is
a m-vector whose jth entry is 〈vj , x〉.

If the vector x and basis vi’s are known, then the development above can be
used to solve for ai’s and form the projection x̂ =

∑
aivi.

Remark 2.18. The matrix A is often called the gramian matrix. It can be
shown that it is nonsingular if and only if vectors vi’s are linearly independent.
Also, note that we have not assumed that vi’s belong to Rn or similar spaces.
Indeed, the set up here applies to a great many problems. (Think about Fourier
series! The basis are orthogonal to one another - in L2 inner product- so A will
be diagonal! Can you finish this ?)

Definition 2.19. The relationship x̂ = Px defines the projection operator P .
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Remark 2.20. It can be proven that P 2 = P for all projections (the so called
idempotency property) and P = P ∗ for all orthogonal projections (self adjoint
property).

When applicable, we can find the matrix representation of this operator.
Consider the following example where x and all of the vi’s are in Rn

Example 2.21. For x, vi ∈ Rn, define V = [v1 v2 . . . vm], which is a n × m
matrix. Then, A = V T V and b = V T x, if we use 〈x, y〉 = xT y for inner product.
Then we have,

x̂ = V a = V (V T V )−1V T x = Px (i.e., P = V (V T V )−1V T )

where P is the matrix representation of the projection operator (onto the span
of vi’s).

Remark 2.22. The previous exercise is the famous least squares solution. The
next level up would be weighted least squares, which is done by modifying the
inner product. For example, by using 〈x1, x2〉 = xT

1 Wx2.
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2.4 Rank, Range, Null Space, etc

Let us start with linear operator A (from X to Y)

Definition 2.23. Range of A is the linear space defined by

R(A) = {y : ∃ x s.t. y = Ax} = A(X ).

Definition 2.24. The null space of A, or kernel of A, is the space defined by

N(A) = {x ∈ X s.t. Ax = 0}.

A very important property of these spaces is the following

R(A) ⊥ N(A∗) , R(A∗) ⊥ N(A) (2.4)

where A∗ is the adjoint consistent with the inner products used. So far, every-
thing we have talked about applies to all linear operators. We can do more for
matrices:

Definition 2.25. For a given m × n matrix, we have

R(A) = span of columns of A

ρ(A) = rank of A = dimension of R(A)

ρ(A) = min{#of indep rows of A ,#of indep columns of A }
ν(A) = nulity of A = dimension of N(A)

Remark 2.26. An important property of matrices are that for any A ∈ Cm×n

ρ(A) + ν(A) = n

consequently,

Rn = R(A∗)
⊥⊕ N(A)

Rm = R(A)
⊥⊕ N(A∗)
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2.5 Stability and Related Topics

Consider the dynamical system described by

ẋ = Ax (2.5)

if A is time varying, eigenvalues tell you next to nothing about the stability
of this system. Recall that the study of stability is, typically, the study of
equilibrium points, which for linear systems boil down to study of the point
x = 0. The most common way to study the stability of such systems is through
the ‘Lyapunov second - or direct- method’. Its most important results can be
summarized by the following:

• If ∃ a continuously differentiable function V (x) that has the following
properties , (1) V (x) > 0 for all nonzero x, V (x) is radially unbounded
(i.e, as x gets large, so does V ), and (3) V̇ < 0 for all nonzero x, then the
system in (2.5) is globally asymptotically stable.

• If we could only guarantee V̇ ≤ 0, then it is marginally stable, or stable
in the sense of Lyapunov. If V̇ can change sign, then the system is not
stable.

Remark 2.27. This is a sufficient condition only. Also, a great deal more can
be said about this method. We leave the details and embellishments to the study
of nonlinear systems.

Remark 2.28. In most applications, the Lyapunov function is chosen to be
V (x) = xT Px for some P > 0. While we discuss the notion of positive definite-
ness later in some details, for now it suffices to know that P > 0 means that P
is positive definite, which means that for any non-zero x, xT Px > 0.

If the matrix A in (2.5) is constant, a great deal of simplification can be
made:

• If the real parts of every eigenvalue of A is strictly negative (i.e., it is on
the open left half plane), then the system is globally asymptotically (and
exponentially) stable. (i.e, starting with any xo, x(t) will go to zero as
time goes by).

• If the real part of one or more eigenvalues is zero then the system is at
best marginally stable (stability in the sense of Lyapunov). In particular,
if zero real parts correspond to Jordan blocks of dimension 2 or more, then
the system is unstable.

A few odds and ends should be reviewed. Recall that for constant A, the
solution of (2.5) is x(t) = eA(t−to)xo where xo is the state at time to and eA(t−to)

is the state transition matrix. Also, recall that if all eigenvalues of A have
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negative real parts, then as t → ∞, eA(t−to) → 0. Indeed, its norm is bounded
by Meα(t−to), where M is a fixed constant and α is the real part of the least
stable eigenvalue. As a result, integrals of the form

lim
t→∞

∫ t

0

eAt dt

remain bounded, and converge, if and only if A is stable (i.e., real part λ is
strictly negative).

2.5.1 Lyapunov Equation

Consider the following linear equation

PA + AT P = −Q (2.6)

where both P and Q are symmetric. From now on, by stable we mean all
eigenvalues in the open left half plane. The basic results can be summarized

• A is stable iff for every Q > 0, (2.6) has a unique positive definite solution

• A is stable iff for every Q ≥ 0 and (A,Q) observable, (2.6) has a unique
positive definite solution

Proof: (Sketch)
⇒ P =

∫ ∞
0

eAT tQeAt dt is the solution to the Lyapunov equation. Check with
Leibniz rule, show uniqueness of the solution, prove positive definiteness.
⇐ Use V (x) = xT Px and show V̇ < 0, where you may end up using LaSalle’s
lemma!
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2.6 Controllability and Observability

In this subsection, we will focus on different definitions of observability for linear
time invariant systems. Recall that controllability is dual of observability and
all relevant results can be obtained by replacing A with AT and C with BT .
We start with

ẋ = Ax + Bu , y = Cx (2.7)

where A is a n× n matrix and B and C are matrices of appropriate dimension.
The system in (2.7) is observable if any of the following equivalent conditions
hold

1. Given u(t) and y(t) for t ∈ [0, T ], x(0) can be determined.

2. For u(t) ≡ 0, CeAtxo = 0 for any interval implies the initial condition was
zero (xo = 0).

3. For u(t) ≡ 0, Wo(t) =
∫ t

0
eAT τCT CeAτ dτ > 0, for any t > 0

4. rank




C
CA
.
.
.

CAn−1




= n

5. rank
(

λI − A
C

)
= n for all complex λ

6. Ax = λx and Cx = 0, (together) imply x = 0

Definition 2.29. The system in (2.7) is detectable if all of the unstable modes
are observable; i.e., Ax = λx and Cx = 0 imply either x = 0 or Real(λ) < 0.
Similarly, the system in (2.7) is stabilizable if all of the unstable modes are
controllable; i.e., AT x = λx and BT x = 0 imply either x = 0 or Real(λ) < 0
. Some books define stabilizability as: The system is stabilizable if and only if
there exists a matrix K, of appropriate dimension, such that A − BK is stable
(strictly). Similar definitions also hold for detectability.
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2.7 PROBLEM SET

Exercise 2.30. Prove the famous Cauchy-Schwarz inequality:

| 〈x, y〉 | ≤ 〈x, x〉 1
2 〈y, y〉 1

2

where equality holds only when one of the vectors is zero or the vectors are
linearly dependent.

Exercise 2.31. Confirm (2.1) is an appropriate norm.

Exercise 2.32. Confirm that the inner products in example 2.7 and example 2.8
are proper inner products. What is the corresponding norm in each case?

Exercise 2.33. Show that for any x ∈ Rn, we have

‖x‖2 ≤ ‖x‖1 ≤ √
n‖x‖2

‖x‖∞ ≤ ‖x‖2 ≤ √
n‖x‖∞

‖x‖∞ ≤ ‖x‖1 ≤ n‖x‖∞
Exercise 2.34. Show that the operator norm satisfies the norm properties.
Furthermore, show that ‖AB‖i ≤ ‖A‖i‖B‖i. This property is not true for non-
induced norms of linear operators!

Exercise 2.35. In example 2.15, prove the expression given for induced 1-norm
and ∞-norm are correct.

Exercise 2.36. Show that the gramian matrix encountered in orthogonal pro-
jection is nonsingular iff the basis vectors are linearly independent.

Exercise 2.37. In orthogonal projection of a vector in Rn onto the span of other
vectors (also in Rn), show that: (a) If x ∈ Hn then x = x̂, (b) P = P 2 and
P = P ∗ (i.e., is self-adjoint), and (c) (I − P ) is also an orthogonal projection.

Exercise 2.38. Show that the property (2.4) is true.

Exercise 2.39. Provide a compete proof of the Lyapunov equation, for the case
of Q > 0. First, show that if the equation holds for P > 0 and Q > 0, then A
must be stable. Next, show that if the equation holds, A is stable and Q > 0,
then P > 0. (NOTE: it is not true that if A is stable and P > 0, the resulting
Q is necessarily positive definite!).

Exercise 2.40. Write the controllability equivalence of properties 1-6 of the
observability.

Exercise 2.41. In the observability properties, show 5 ⇔ 6 and 2 ⇔ 3.

Exercise 2.42. Given that the system in (2.7) is observable and given y(t) and
u(t), how would you calculate x(0)? What is the dual problem in controllability?

Exercise 2.43. For a stable A, prove that the observability matrix Wo(∞) in
property 3 satisfies PA + AT P = −CT C
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3 Eigenvalues, Singular Values and Pseudo
inverse.

3.1 Eigenvalues and Eigenvectors

For a square n× n matrix A, we have the following definition:

Definition 3.1. If there exist (possibly complex) scalar λ and vector x such
that

Ax = λx, or equivalently, (A− λI)x = 0, x 6= 0

then x is the eigenvector corresponding to the eigenvalue λ. Recall that any
n× n matrix has n eigenvalues (the roots of the polynomial det(A− λI)).

Definition 3.2. Matrix A is called simple if it has n linearly independent eigen-
vectors.

Definition 3.3. Let AH 4
= ĀT , xH 4

= x̄T (i.e., complex conjugate transpose).
Matrix A is:
Hermitian if A = AH ⇔ xHAx = real , for all x ∈ Cn

Normal if AAH = AHA
Unitary if AAH = AHA = I
Orthogonal if AAT = AT A = I, (for A real)

Definition 3.4. Hermitian matrix D (i.e., D = DH) is
positive definite if xHDx > 0 for all x 6= 0
positive semi definite if xHDx ≥ 0 for all x 6= 0
negative definite if xHDx < 0 for all x 6= 0
negative semi definite if xHDx ≤ 0 for all x 6= 0
indefinite if xHDx < 0 for some nonzero x and xHDx > 0 for some other
nonzero x

Definition 3.5. If A = QBQ−1, for some nonsingular Q, then ‘A is similar
to B’ or B is obtained via a similarity transformation (Q) of A. If we had
A = QBQT , then A is obtained through a ‘congruent’ transformation on B.

P1. For general matrix A: If all e-values are distinct; i.e., λi 6= λj , (i 6= j),
then A has n linearly independent eigenvectors; i.e., it is simple. Furthermore,
we have

A = QΛQ−1, Λ = Q−1AQ

where Q = [x1 . . . xn] (the e-vectors) and Λ is a diagonal matrix with λi on the
(i,i) element. (Such a matrix is sometimes called Diagonalizable) .

P2. For Hermitian D, its eigenvalues are real; i.e, Imag(λi) = 0 ∀i. Further-
more, if D is real (i.e., real symmetric) the eigenvectors are real as well.
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P3. If D is Hermitian, it is also simple .

P4. For D = DH (i.e, Hermitian D) eigenvectors corresponding to distinct
eigenvalues are orthogonal in the sense that xH

j xi = 0, if λi 6= λj .

P5. For D = DH , let x1 · · ·xm be the eigenvector corresponding to the repeated
eigenvalue λ̂. Show that if we replace the x′is with their Gramm-Schmidt vectors,
we still have m eigenvectors for λ̂.

P6. For Hermitian D, the eigenvector matrix can be written as a unitary
matrix; that is

D = QΛQH , QQH = QHQ = I, , Λ real, Q real if D real symmetric

P7. If D = DH is positive (semi) definite, then Dii > (≥)0, with similar result
for negative (semi) definite.

P8. For a Hermitian matrix D, we have
D positive semi definite if and only if (iff or ⇐⇒) λi ≥ 0, ∀i
D is positive definite iff λi > 0, ∀i
D is negative semi definite iff λi ≤ 0, ∀i
D is negative definite iff λi < 0, ∀i
D is indefinite iff λi > 0 for some i and λi < 0 for some other i

P9. For any matrix A, xHAHAx ≥ 0, ∀x. Sometimes we write AHA ≥ 0 for
short.

P10. If Hermitian D is positive semi definite (D ≥ 0), then there exist Hermi-
tian matrices V such that

D = V V, ; e.g., V = Q(Λ)0.5QH

and furthermore there exist matrices C such that

D = CHC ; e.g., C = (Λ)0.5QH

P11. If Q is unitary, all of its eigenvalues have magnitude one; i.e, |λi(Q)| = 1.

P12. If λ is an eigenvalue of A, it is also an eigenvalue of AT . Also, λ̄ is
an eigenvalue of AH . Therefore if A is real, eigenvalues appear in complex
conjugate pairs.

P13. If A is normal, then

Ax = λx ⇐⇒ AHx = λ̄x
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P14. If A is normal, its eigenvectors are orthogonal, in the sense that xH
i xj = 0

P15. If A2 = A then all eigenvalues of A are either zero or one (idempotent
matrix)

P16. If Ak = 0 for any integer k, then all eigenvalues of A are zero (nilpotent
matrix)

P17. For any Hermitian matrix D

λmin(D)xHx ≤ xHDx ≤ λmax(D)xHx ∀x ∈ Cn

where λmin is the smallest eigenvalue (algebraically). This inequality is often
called Raleigh’s inequality.

P18. For any two Hermitian matrices M and N ,

λmin(M+N) ≥ λmin(N)+λmin(M) , and λmax(M+N) ≤ λmax(N)+λmax(M)

P19. If (λ, x) are an eigenvalue/eigenvector pair of the matrix AB, with λ 6= 0,
then (λ,Bx) is an eigenvalue/eigenvector pair for BA.

P20. If A and B are similar (via transformation Q), they have the same eigen-
values and their eigenvectors differ by a Q term.
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3.2 Singular Value Decomposition (SVD)

For the development below, assume A ∈ Cm×n, m ≥ n, with rank r (i.e.,
ρ(A) = r). Note that AHA ∈ Cn×n and AAH ∈ Cm×m. Also, for inner product
and norm, we use ‖x‖2 =< x, x >, with < x, y >= xHy .

We need to review the following properties

Range(A) = Range(AAH), and Range(AH) = Range(AHA)

which implies ρ(A) = ρ(AH) = ρ(AAH) = ρ(AHA) = r. The basic SVD can be
obtained through the following

SVD1. Let AAHui = σ2
i ui, for i = 1, 2, · · ·m.

U
4
= [u1 u2 · · ·um], U ∈ Cm×m, UUH = UHU = Im.

We then have ‖AHui‖ = σi for i = 1, 2, · · ·m.

SVD2. Let AHAvi = σ̂2
i vi, for i = 1, 2, · · ·n, such that

V
4
= [v1 v2 · · · vn], V ∈ Cn×n, V V H = V HV = In.

Then nonzero σ̂i’s are equal to nonzero σi’s of SVD1, with vi = AHui
σi

. For zero
σ̂i, we have Avi = 0. (To show this, use P19 of the eigenvalue handout. Show
that AHA and AAH have the same nonzero eigenvalues, with v′s as defined
above). These vi’s are linearly independent and form a set of orthonormal
vectors.

SVD3. Consider the following n equations for i = 1, 2, · · ·n:

Avi = AAH ui

σi
(or zero) = σiui (or zero).

These equations can be written as

AV = UΣ, ⇐⇒ A = UΣV H (3.1)

where U and V are the same as SVD1 and SVD2, respectively. Σ is a m × n
matrix, with the top left n×n block in diagonal form with σi’s on the diagonal
and the bottom (m − n) × n rows zero. Without loss of any generality, we let
σ1 ≥ σ2 ≥ · · ·σn ≥ 0. These σi’s are called the singular values of A (or AH).
Since rank of A is assumed to be r ≤ min{m,n}, there are exactly r nonzero
singular values (Why? recall SVD1 and SVD2). Therefore, we can write

U = [Ur Ūr], Ur ∈ Cm×r, V = [Vr V̄r], Vr ∈ Cn×r, (3.2)

and

Σ =
[

Σr 0
0 0

]

, Σr = diag{σ1, σ2, . . . , σr} (3.3)
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with σ1 ≥ σ2 ≥ · · · ≥ σr > 0. Or condensing (3.1),

A = UrΣrV H
r . (3.4)

Equations (3.1) or (3.4) are often called the ‘singular value decomposition
of A’. If A is a real matrix, all vectors (i.e, ui’s, vi’s) will be real and the
superscript ‘H’ is replaced by ‘T’ - transpose. We can now discuss some of the
main properties of singular values. First we introduce the following notation

σ(A)
4
= σmax(A), σ(A)

4
= σmin(A), (3.5)

where σi i the ith singular value. Recall that an m × n matrix has n singular
values, of which the last n− r are zero (r = ρ(A)).

P1-SVD. The ‘principal gains’ interpretation:

σ(A)‖x‖2 ≥ ‖Ax‖2 ≥ σ(A)‖x‖2, ∀x (3.6)

P2-SVD. The induced 2-norm:

σ(A) = ‖A‖2 = sup
‖Ax‖2
‖x‖2

, x 6= 0. (3.7)

P3-SVD. If A−1 exists,

σ(A) =
1

σ(A−1)
. (3.8)

Extra1. Null space of A = span{vr+1 · · · vn} and range space of A = span{u1 · · ·ur}.

Extra2. UH
r Ur = Ir and UrUH

r is the orthogonal projection operator onto
the Range of A. (recall R(A) = R(AAH), but R(AAH) = span(u1, · · · , ur),
since ui’s are orthonormal, direct calculation of the projection operator gives
the result).

Extra3. V H
r Vr = Ir and VrV H

r is the orthogonal projection operator onto the
Range of AH .
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3.3 A Famous Application of SVD

Let us consider the equation

Axo = bo ⇒ xo = A−1bo

assuming that the inverse exists and A is known accurately. Now let there be
some error in our data; i.e., let b = bo + δb, where δb is the error or noise, etc.
Therefore, we are now solving

Ax = bo + δb ⇒ x = A−1bo + A−1δb = xo + δx.

We are interested in investigating how small or large is this error in the answer
(i.e., δx) for a given amount of error. Note that

δx = A−1δb ⇒ ‖δx‖ ≤ ‖A−1‖ ‖δb‖

or since ‖A−1‖ = σmaxA−1 = 1
σminA , we can write

‖δx‖ ≤ ‖δb‖
σminA

. (3.9)

However, recall that xo = A−1bo and therefore

‖xo‖ ≥ σmin(A−1)‖bo‖ =
‖bo‖

σmaxA
. (3.10)

Combining (3.9) and (3.10)

‖δx‖
‖xo‖

≤ ‖δb‖
σminA

1
‖xo‖

or
‖δx‖
‖xo‖

≤ ‖δb‖
‖bo‖

σmaxA
σminA

where the last fraction is called ‘the condition number of A’. This number is
indicative of the magnification of error in the linear equation of interest. Simi-
lar analysis can be done regarding a great many numerical and computational
issues. In most problems, a matrix with very large condition number is called
ill conditioned and will result in severe numerical difficulties.

Note that by definition, the condition number is equal or larger than one.
Also, note that for unitary matrices, the condition number is one (one of the
main reasons these matrices are used heavily in computational linear algebra).
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3.4 Important Properties of Singular Values

In the following, use σ(A) as the maximum singular value of A, σ(A) as the
minimum singular value and σi(A) as the generic ith singular value.

In all cases, A ∈ Cm×n. Recall that σ2
i = λi(AHA) = λI(AAH), and that

σi(A) ≥ 0.

P4-SVD. σi(αA) = |α|σi(A), ∀α ∈ C

P5-SVD. σ(AB) ≤ σ(A) . σ(B)

P6-SVD. σ(A + B) ≤ σ(A) + σ(B)

P7-SVD. σ(AB) ≥ σ(A) . σ(B)

P8-SVD. σ(A) ≤ |λi(A)| ≤ σ(A) ∀ i

P9-SVD. σ(A)− 1 ≤ σ(I + A) ≤ σ(A) + 1

P10-SVD. σ(A)− σ(B) ≤ σ(A+B) ≤ σ(A) + σ(B)

P11-SVD. σ(A) ≤
√

trace(AHA) ≤
√

n σ(A)

P12-SVD. TraceAHA =
∑k

1 σ2
i (A), k = min(n,m)

P13-SVD. detAHA =
∏k

1 σ2
i (A)

P14.-SVD In general, σi(AB) 6= σi(BA)

P15-SVD. σ(A)σ(B) ≤ σ(AB) A ∈ Cm×n, B ∈ Cn×l n ≤ l only
− σ(B)σ(A) ≤ σ(AB) A ∈ Cm×n, B ∈ Cn×l n ≤ m only

P16-SVD. σ(AB) ≤ σ(A)σ(B) no restrictions
− σ(AB) ≤ σ(B)σ(A) no restrictions

P17-SVD. σ(A)σ(B) ≤ σ(AB) ≤ σ(A)σ(B) ≤ σ(AB) ≤ σ(B)σ(A), n ≤ l
− σ(A)σ(B) ≤ σ(AB) ≤ σ(B)σ(A) ≤ σ(AB) ≤ σ(B)σ(A), n ≤ m
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3.5 Pseudo Inverse

The basic definition of inverse of a matrix A is well known, when it is square
and full rank. For non-square, but full rank, matrix A ∈ Rm×n, we have the
following: When m > n (n > m) left (right) inverse of A is the matrix B in
Rn×m (in Rm×n) such that BA (AB) is In (Im).

When the matrix is not full rank, the so called ‘pseudo’ inverses are used.
The famous definition of Penrose is the following. The pseudo inverse of A is
the unique matrix (linear operator) A† that satisfies the following

1. (A†A)H = A†A

2. (AA†)H = AA†

3. A†AA† = A†

4. AA†A=A

Recalling that matrix P is a projection if P 2 = P and is orthogonal pro-
jection if P = P 2 and P = PH , we can see that the pseudo inverse has the
following properties

• A†A is the orthogonal projection onto Range of AH

• AA† is the orthogonal projection onto Range of A

• (A†)† = A

Now we will suggest the following candidate:

A = UrΣrV H
r =⇒ A† = VrΣ−1

r UH
r (3.11)

PINV1. Show that for full rank matrices, the definition in (3.11) reduces to
standard inverse (square matrices) or left or right inverse.

PINV2. Verify that A† defined in (3.11) satisfies the basic properties of pseudo
inverse.

To gain a better understanding of the pseudo inverse, consider the linear
equation Ax = y. When A is square and full rank, the solution is A−1y. In
general, we say that the least squares solution of this problem is A†y! Let us
investigate some more.

PINV3. Show that when A is a wide (or long) matrix with full row rank, the
problem has infinitely many solutions, among which only one is in the range of
AH . Further, this solution has the smallest norms among all possible solutions.
The solution is x = (right inverse of A)y.
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PINV4. When A is a tall matrix with full column rank, then x = ( left inverse
of A) y gives the unique solution or (if no solution exists) the solution that
minimizes the 2-norm of the error (y −Ax).

We can generalize this by letting A be rank deficient. Starting with y, we
find yp its projection onto range of A to minimize the norm of the error (yp = y
if at least one solution exists). Now Ax = yp has one or many solutions, among
which the one with minimum norm is the unique vector xo such that it is in the
range space of AH . The relationship between xo and y is xo = A†y. In short,
the pseudo inverse simultaneously minimizes the norm of the error as well as
the norm of the solution itself.

PINV5. Show that the definition of A† in (3.11) is the same as the development
discussed above (i.e., show that Axo is equal to yp and xo is in the range of AH .
For this last part recall that the range of AH is the same as range of AHA which
is the same as span of the v1 to vr).

Another common, and equivalent, definition (see Zadeh and Desoer) for the
pseudo inverse is the matrix satisfying

1. A†Ax = x ∀x ∈ range ofAH

2. A†z = 0 ∀z ∈ null space ofAH

3. A†(y + z) = A†y + A†z ∀y ∈ R(A) , ∀z ∈ R(A)⊥

Finally, they suggest the following calculation for the inverse

A† = (AHA)†AH (3.12)

PINV6. Show that (3.12) results in the same matrix as (3.11).
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4 THE LINEAR QUADRATIC REGULATOR

In this Section, we will deal with the ‘Linear Quadratic Regulator’ problem
(or LQR for short). We start with the most general from; that of time varying
system matrices and finite horizon.

4.1 Time varying and finite horizon case

Consider the dynamical system
{

ẋ(t) = A(t)x(t) + B(t)u(t)
x(to) = xo

(4.1)

We are interested in finding a control u(t) such that the following cost func-
tional is minimized

J(to, tf , xo, u(.) ) =
∫ tf

to

{xT (t)Q(t)x(t)+uT (t)R(t)u(t), } dt + xT (tf )P1 x(tf )

(4.2)
where















tf is the fixed final time
P1 ≥ 0 is the terminal penalty term
Q(t) ≥ 0 ∀t ∈ [0, tf ]
R(t) > 0 ∀t ∈ [0, tf ]

(4.3)

The desired solution would give us a control law for u(.). This may or may
not be feedback (or even linear). While there are several ways to approach this
problem, we will use the perturbation or variation approach. For this, we make
the following assumption:

Assumption 4.1. Suppose there exists an optimal control law u∗(.) that mini-
mizes (4.2), subject to (4.1).

Therefore, any other control law cannot do better! Now let us implement
u∗(t), and label the resulting trajectory, which minimizes (4.2), x∗(t); i.e.,

{

ẋ∗(t) = A(t)x∗(t) + B(t) u∗(t)
x∗(to) = xo

(4.4)

Now all other control laws can be represented by

u(t) = u∗(t) + ε ũ(t), t ∈ [0, tf ] (4.5)

where ε is a (possibly negative) scalar and ũ(t) is the control perturbation (func-
tion of time). Note that if u(t) is implemented, the resulting trajectory will be
the x(t) of (4.1).

4–1



At this point we can introduce the state perturbation x̃(t)

εx̃(t)
4
= x(t)− x∗(t) ⇐⇒ x(t) = x∗(t) + εx̃(t) (4.6)

where ε is the same as in (4.5) and x(t) is the response to the control u(t) - as
in (4.5). Combining (4.5) and (4.6), we get

{ ˙̃x(t) = A(t) x̃(t) + B(t) ũ(t)
x̃(to) = 0.

(4.7)

From the first class in linear systems, the solution (or response) to (4.7) is

x̃(t) =
∫ t

to

Φ(t, τ)B(τ)ũ(τ) dτ (4.8)

where Φ(t, τ) is the state transition matrix associated with A(t). Recall that
state transition matrix satisfies the following















Φ−1(t, τ) = Φ(τ, t)
Φ(t, t) = I
Φ(t, t1)Φ(t1, t2) = Φ(t, t2) ∀t1 ∈ [t, t2]
d
dtΦ(t, τ) = A(t)Φ(t, τ)

(4.9)

Let us go back to our problem. Since u∗(.) is the optimal control, no ε or
ũ(.) can result in a smaller cost function than the following optimal one

Jmin = J(to, tf , xo, u∗(.) ) (4.10)

=
∫ tf

to

{x∗T (t)Q(t)x∗(t) + u∗T (t)R(t)u∗(t) } dt + x∗T (tf )P1 x∗(tf ).

Therefore, if we calculate the cost due to a non-optimal control law, we
expect to have a larger than (or at best equal to) Jmin. That is, if we implement
some u(t) = u∗(t) +ε ũ(t), the cost will be

J(to, tf , xo, u(.) ) =
∫ tf

t0
{ [x∗(t) + εx̃(t)]T Q(t)[x∗(t) + εx̃(t)] } dt

+
∫ tf

t0
{ [u∗(t) + εũ(t)]T R(t)[u∗(t) + εũ(t)] } dt

+ [x∗(tf ) + εx̃(tf )]T P1[x∗(tf ) + εx̃(tf )] (4.11)

which cannot be any less that Jmin. Now let us rearrange (4.11) and group in
terms of powers of ε.
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J(to, tf , xo, u(.) )

=
∫ tf

t0
{x∗T (t)Q(t)x∗(t) + u∗T (t)R(t)u∗(t) } dt + x∗T (tf )P1 x∗(tf )

+ 2ε
[∫ tf

t0
{x∗T (t)Q(t)x̃(t) + u∗T (t)R(t)ũ(t) } dt + x∗T (tf )P1x̃(tf )

]

+ ε2
[∫ tf

t0
{ x̃T (t)Q(t)x̃(t) + ũT (t)R(t)ũ(t) } dt + x̃T (tf )P1x̃(tf )

]

(4.12)

This expression holds for all possible ũ(.) and all possible ε. Equation (4.12)
has the form of

J = A + εB + ε2 C

where A is the minimum of J and B and C are independent of ε and C ≥ 0
(all scalars). As discussed in the homework problems, it follows that B, the
coefficient of the ε term, must be zero (it is a necessary condition). That is

∫ tf

t0
{x∗T (t)Q(t)x̃(t)+u∗T (t)R(t)ũ(t) } dt + x∗T (tf )P1x̃(tf ) = 0, ∀ ũ. (4.13)

Now use (4.8) for x̃ in the above equation to obtain

∫ tf

t0

[

x∗T (t)Q(t)
∫ t

to

Φ(t, τ)B(τ)ũ(τ)dτ
]

dt +
∫ tf

to

u∗T (t)R(t)ũ(t) dt

+ x∗T (tf )P1

∫ tf

to

Φ(tf , t)B(t)ũ(t)dt = 0, ∀ ũ.

We will concentrate on the first term. This term can be manipulated in the
following form (through basic change of variables)

∫ tf

t0

∫ t

t0
x∗T (t)Q(t)Φ(t, τ)B(τ)ũ(τ)dτ dt τ↔t=

∫ tf

t0

∫ τ

t0
x∗T (τ)Q(τ)Φ(τ, t)B(t)ũ(t)dt dτ

which, according to yet another homework problem (!), can be written as

∫ tf

t0

∫ tf

t
x∗T (τ)Q(τ)Φ(τ, t)B(t) ũ(t) dτ dt.

4–3



Incorporating all in (4.13) we get the following necessary condition for u∗(.)
to be optimal

∫ tf

t0

[∫ tf

t
x∗T (τ)Q(τ) Φ(τ, t) B(t) dτ + u∗T (t)R(t)

]

ũ(t) dt

+
∫ tf

t0

[

x∗T (tf )P1 Φ(tf , t)B(t)
]

ũ(t) dt = 0. (4.14)

Recall that equation (4.14) holds for all possible ũ(.), which implies that
the integrand must be zero, identically. (Technically, we should say almost
everywhere!). Therefore, we have

∫ tf

t
x∗T (τ)Q(τ)Φ(τ, t) B(t) dτ + u∗T (t) R(t) + x∗T (tf )P1Φ(tf , t)B(t) = 0.

(4.15)

Next, we will define the (so called co-state) vector p(t) according to

pT (t)
4
=

∫ tf

t
x∗T (τ)Q(τ)Φ(τ, t) dτ + x∗T (tf )P1Φ(tf , t). (4.16)

With this definition, (4.15) gives an expression for the optimal control law,
since (4.15) and (4.16) imply

u∗T (t)R(t) + pT (t)B(t) = 0 ⇒ u∗T (t) = −pT (t)B(t)R−1(t)

or
u∗(t) = −R−1(t) BT (t) p(t). (4.17)

Note that we are still far from done. We need to find p(t) and even then the
control law appears to be open loop!! Now with the help of Leibniz rule (see
homework problems!) we can find the derivative of p(t) the so called co-state
vector.

{

ṗ(t) = −Q(t)x∗(t)−AT (t) p(t)
p(tf ) = P1x∗(tf ). (4.18)

Equation (4.18) is called the adjoint equation. Now using (4.17) in (4.4), we
get the following set of differential equations

{

ẋ∗(t) = A(t) x∗(t)−B(t)R−1(t) BT (t) p(t)
ṗ(t) = −Q(t)x∗(t)−AT (t) p(t) (4.19)

with the end condition
{

x∗(to) = xo

p(tf ) = P1x∗(tf ) (4.20)
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Equations (4.19) and (4.20) constitute a set of ‘two point boundary value’
problem. A common way to approach this problem, i.e., the fact that p(to) is
not known, is to employ trial and error type techniques. In any rate, solving
this set of equations can be formidable. Worse yet, it still leaves us with an
open loop control!! These two problems force us to dig deeper!

We will go back to (4.19) and try to write the response! From (4.19) we have
(

x∗(tf )
p(tf )

)

= Θ(tf , t)
(

x∗(t)
p(t)

)

where Θ(tf , t) is the state transition matrix corresponding to the 2n order sys-
tem of (4.19). Using the semi-group property of the state transition matrix, we
can write

(

x∗(t)
p(t)

)

= Θ(t, tf )
(

x∗(tf )
p(tf )

)

=
(

θ11(t, tf ) θ12(t, tf )
θ21(t, tf ) θ22(t, tf )

) (

x∗(tf )
p(tf )

)

where Θ(t, tf ) has been partitioned into 4 n × n blocks. Separating the two
equations, and recalling that p(tf ) = P1x∗(tf ), we have

x∗(t) = θ11(t, tf ) x∗(tf ) + θ12(t, tf ) P1 x∗(tf ) (4.21)

p(t) = θ21(t, tf ) x∗(tf ) + θ22(t, tf )P1 x∗(tf ) (4.22)

Finding x∗(tf ) from (4.21) and using it in (4.22), we get

p(t) = [θ21(t, tf ) + θ22(t, tf ) P1] [θ11(t, tf ) + θ12(t, tf )P1]−1 x∗(t). (4.23)

Note that the two brackets are independent of xo and only depend on system
matrices. This leads us to introduce

P (t)
4
= [θ21(t, tf ) + θ22(t, tf )P1] [θ11(t, tf ) + θ12(t, tf ) P1]−1, (4.24)

which results in the following form for the optimal control

p(t) = P (t) x∗(t) ⇒ u∗(t) = −R−1(t) BT (t) P (t) x∗(t) (4.25)

which is in the feedback form!!! and is independent of xo. The last problem
is actually finding this P (t)! For this, we go back and differentiate (4.23) (i.e,
p(t) = P (t)x∗(t)), which yields

ṗ(t) = Ṗ (t)x∗(t) + P (t)ẋ∗(t)

using the expressions for ṗ and ẋ∗, from (4.19),

−Q(t)x∗(t)−AT (t) p(t) = Ṗ (t)x∗(t) + P (t)A(t)x∗(t)− P (t)B(t)R−1(t)p(t)
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and using p(t) = P (t)x∗(t), we get ∀ t ∈ [to, tf ]
{

Ṗ (t) + P (t)A(t) + AT (t)P (t)− P (t)B(t)R−1(t)BT (t)P (t) + Q(t)
}

x∗(t) = 0,

for all x∗(.) that follow from all possible xo’s. Therefore, we must have ∀ t ∈
[to, tf ]

{

Ṗ (t) + P (t)A(t) + AT (t)P (t)− P (t)B(t)R−1(t)BT (t)P (t) + Q(t) = 0,
P (tf ) = P1

(4.26)
where the final condition is due to p(tf ) = P1x∗(tf ). Equation (4.26) is known
as the ‘matrix (differential) Riccati’ equation.

We can summarize the solution of LQR as follows:

ALGORITHM:
- solve (4.26) ‘backwards in time’ for P (t)
- store the gain matrix K(t) = −R−1(t)BT (t)P (t)
- implement u(t) = K(t)x(t) on line

It appears that the problem is solved! (But we cannot just leave ‘good
enough’ alone, can we?) We can come up with a lot of nifty results. For
example, define

{

L(t, tf , xo, u∗(.))
4
= x∗T (t)P (t) x∗(t)

L(tf , tf , xo, u∗(.)) = x∗T (tf )P1 x∗(tf )
(4.27)

that is, a function that starts from tf and evolved backward toward to, for a
given optimal trajectory.

It can be shown (see homework problems) that the derivative of this function
satisfies the following

L̇(t, tf , xo, u∗(.)) = −x∗T (t)Q(t)x∗(t)− u∗T (t)R(t)u∗(t)

which implies that L(t, tf , xo, u∗(.)) is the value of J if only the portion from t
to tf was integrated. As a result, J(to, tf , xo, u∗(.)) = L(to, tf , xo, u∗(.)) or

Jmin = x∗T (to)P (to)x∗(to). (4.28)

This last result is quite useful for calculating the total ‘cost’ associated for
a given set of initial conditions. It also leads to a great deal of insight into this
optimal control problem.

We will now look into the case where t → ∞. First, since from now on we
are interested in very large terminal time, it makes sense to make the following
assumption:

Assumption 4.2. For indefinite horizon problem, P1 = 0.
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Next consider two different values for the final time:
1) tf = t2
2) tf = t1

where t2 > t1. It can be shown (see HW) that

J(to, t1, xo) ≤ J(to, t2, xo). (4.29)

Note that we have eliminated u from the arguments of J since in the optimal
case, u(.) is a function of x. Now let us use the following definition:

{

P 1(t) : The solution to (4.26) with tf = t1
P 2(t) : The solution to (4.26) with tf = t2

(4.30)

Clearly, (4.28), (4.29) and (4.30) imply that

P 1(to) ≤ P 2(to) · · · .

This relations holds regardless of the value of xo or behavior of the system
matrices, A(t), etc. Therefore we come to this ‘bottom line’:

Remark 4.3. The longer you integrate the Riccati equation, the larger the value
of P (to).

Now, we are ready to tackle the steady state case. While there are some
applications for periodic systems, these results are mostly used for the time-
invariant case. The steady state case is sometimes called ‘the infinite horizon’
case.
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4.2 The Steady State Riccati Equation (SSRE)

Since we will deal with time invariant systems (from now on, that is), we can
use to = 0 with out loss of generality. Also, note that from now on, we will use
the following assumption:

Assumption 4.4. Matrices A,B, Q, and R are all constant matrices.

The problem, therefore is the following:

{

ẋ(t) = Ax + Bu
x(0) = xo

(4.31)

where we have dropped (t) from x and u, for simplicity. The cost function to
be minimized is

J(xo) =
∫ ∞

0
{xT Qx + uT Ru } dt. (4.32)

From the development of previous Section, we know that the optimal solution
has the following form for the control law

uopt(t) = −R−1 BT P (t)x(t) (4.33)

where P (t) is obtained from

{

Ṗ (t) + P (t)A + AT P (t)− P (t)BR−1BT P (t) + Q = 0, ∀ t ∈ [t,∞]
P (∞) = 0.

(4.34)

By the discussion at the end of the previous Subsection, it is clear that as
(4.34) is integrated backwards

P (t2) ≤ P (t1) if t2 ≥ t1

(because the duration of integration for P (t1) is longer). The question becomes:
“As we integrate more and more, does P (a nondecreasing function) blow up or
does it converge to something?” Note that by (4.28), P (0) have to be at least
semi-positive definite.

Next, suppose that (A, B) is stabilizable; i.e., ∃ a gain matrix such that
(A − BK) is stable. Now use this gain for control; i.e., use u = −Kx, which
results in a closed loop system of ẋ = (A−BK)x. Clearly, this may not be the
optimal control. Let us calculate the cost functional J for this control law

J =
∫ ∞

0
{xT Qx + uT KT RKx } dt =

∫ ∞

0
{xT (Q + KT RK)x } dt.
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However, for this system we know that x(t) has the from

x(t) = e(A−BK)txo

which results in

J =
∫ ∞

0
{xT

o e(A−BK)T t (Q + KT RK) e(A−BK)t xo } dt.

From basic definitions of stability and exponential stability, it follows that
this J is finite. Since this is not necessarily the optimal J , the optimal J is
finite, as well. By (4.28), it follows that P does not blow up! We make the
following observation:

Remark 4.5. Stabilizability implies the existence of an optimal control law.
Indeed, it also produces upper bounds for J and, hence, P (0). Therefore, it also
implies the convergence of P (t).

Once this convergence occurs, say P (t) → P , the derivative in (4.34) disap-
pears and P satisfies the following equation (known as the ‘Algebraic Riccati
Equation or ARE’)

PA + AT P − PBR−1BT P + Q = 0 ARE (4.35)

The convergence can be shown “formally”, by assuming P (t) converges to
some P (due to convergence of J). Then it can be shown that this is the same
as P in (4.35), for any positive semi definite solution of (4.35).

Remark 4.6. Uniqueness of the positive semi-definite solution to (4.35) - and
stability of the closed loop sysem - is established through the use of another
assumption: (A,Q) observable.
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4.3 The Potter’s Method

Let us start with the optimal case

ẋ(t) = Ax + Bu = (A−BR−1BT P )x

and for brevity, define
G
4
= BR−1BT (4.36)

so that the closed loop system and ARE can re written as
{

ẋ(t) = (A−GP )x
PA + AT P − PGP + Q = 0. (4.37)

Matrix (A−GP ) is the closed loop matrix. Its eigenvalues and eigenvectors
are called the closed loop eigenvalues and eigenvector, respectively. Denote the
eigenvalues and eigenvectors of the closed loop system by

(A−GP )Xi = λiXi. (4.38)

From (4.37), we have P (A−GP ) = −AT P −Q, therefore (using (4.38))

P (A−GP )Xi = λiPXi = −AT PXi −QXi. (4.39)

Now, putting (4.38) and (4.39) in matrix form
[

A −G
−Q −AT

] {

Xi
PXi

}

= λi

{

Xi

PXi

}

. (4.40)

The 2x× 2x matrix in (4.40) is called the ‘Hamiltonian’ matrix. From now
on, we will call it H ; i.e.,

H
4
=

[

A −G
−Q −AT

]

. (4.41)

From (4.40), we see that every closed loop eigenvalue is an eigenvalue of H.
Also, note the relationship between the top and bottom halves of the eigenvec-
tors of H corresponding to these eigenvalues. If everything goes o.k., we will be
looking for stable eigenvalues of H (better have stable closed loop!) and exploit
the structure of these eigenvectors. Note that if we call the bottom of each
stable eigenvector Yi = PXi, then by stacking these n vector equations next to
one another, we have

[Y1 Y2 . . . Yn ] = P [X1 X2 . . . Xn ].

That is how Potter solved the problem about 30 years ago. Consider this
algorithm:
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• Form H in (4.41) (assume Re(λ(H)) 6= 0)

• Solve for eigenvalues and eigenvectors. Choose the stable ones only.

• Stack the stable eigenvectors next to one another to form a 2x×n matrix.
Call the top half X and the bottom half Y .

• Find P according to P = Y X−1

It is easy to show (see HW, also it is one of the main properties of Hamil-
tonian type matrices) that if λ is an eigenvalue of H, so is −λ (i.e., eigenvalues
are symmetric with respect to the imaginary axis). That is, there cannot be
more that n stable (or unstable) eigenvalues for H!

What are the pitfalls? What if some of the eigenvalues of H have zero real
parts? What if X is not invertible? We will deal with these through homework
problems and class discussion.

Remark 4.7. There has been a great deal of research on the minimum (i.e.,
sufficient and necessary) conditions needed for the existence of a P ≥ 0 that
stabilizes the closed loop (ans: detectability and stabilizability), those needed to
have P > 0, efficient numerical algorithms (e.g., Schur methods), etc. In class
discussions, we will address some of these issues and talk about references for
most others.
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4.4 PROBLEM SET

P1. When we write xT Qx, or similar expressions, we typically assume Q is
symmetric. Show that this is not an important -or restrictive - assumption, as
long as Q is used in these quadratic forms only.

P2. Let X(ε) = A + εB + ε2C, with A > 0 , C ≥ 0 and ε scalar (possibly
negative). Also, A,B, C are independent of ε. Show that if A is the minimum
value of X(ε), for all ε, then B must be zero.

P3. Show that
∫ t1

to

∫ τ

to

A(t, τ) dt dτ =
∫ t1

to

∫ t1

t
A(t, τ) dτ dt

P4. Let Φ(t, τ) be the state transition matrix for A(t). Show that

d
dt

Φ(τ, t) = −Φ(τ, t)A(t)

P5. If p(t) is defined by (4.16), use Leibniz rule to show that (4.18) is true.

P6. Show that in (4.26), the solution P is symmetric; i.e., P (t) = PT (t)

P7. calculate and simplify the derivative of L defined in (4.27). Show (4.28)
holds (hint: consider Ĵ =

∫ tf

t xT Qx · · · )

P8. Show that (4.29) holds (remember to set P1 to zero).

P9. Show that the eigenvalues of H in (4.41) are symmetric with respect to
the imaginary axis. (hint: one way is to lok into the possibility of having
(−XT P XT )T as eigenvector of HT )

P10. Show that if (A,B) is controllable and (A,Q) is observable, then eigen-
values of H will not have zero real parts.

P11. Using (4.35), and not the Hamiltonian, show that

Q > 0 ⇒ P > 0 and/or (A,Q) observable ⇒ P > 0

(think of J). What about

Q > 0 ⇒ (A−GP ) stable

Q ≥ 0, (A,Q) observable ⇒ (A−GP ) stable

Can you use the basic definition of J to interpret these last results?
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5 EXTENSIONS TO LQR

We start with the infinite horizon, time invariant problem, which has been
discussed in some details. One potential problem may be that while the LQR
problem we discussed minimizes the cost functional, it may not result in good
response (e.g., the state vector dies too slowly) or does not fit our goals (our
objectives do not fit the form of J we have been using). In this Section, we will
try to deal with a few of these issues. Unless specifically needed, we will simplify
notations by using x, y, etc. instead of x(t), y(t), etc. The time dependency
will be clear from the context.

5.1 Cross Terms in the Cost Functional

Consider the same system as before, i.e,

{

ẋ = Ax + Bu
x(0) = xo.

(5.1)

Instead of the J we used before, however, let us try to minimize the following
cost functional

J(xo) =
∫ ∞

0
{xT Qx + uT Ru + 2xT Su } dt. (5.2)

where S is a matrix of appropriate dimension.

Remark 5.1. Cost functionals of the form (5.2) are encountered when, for
example, one is interested in minimizing the integral of control effort (i.e., the
uT Ru term) plus the square of the norm of some outputs y = Cx + Du. The
term ‖y‖2 would, typically, have cross terms.

The first step in solving this problem is to do the following manipulations
(of the ‘completing the square’ variety);

uT Ru+2xT Su+xT Qx = (u+R−1ST x)T R (u+R−1ST x)+xT (Q−SR−1ST )x.
(5.3)

Next, define the following modified dynamics
{

ẋ = (A−BR−1ST )x + Bũ
ũ = u + R−1ST x. (5.4)

The cost funcctional in (5.2) can now be written as

J(xo) =
∫ ∞

0
{xT (Q− SR−1ST )x + ũT Rũ } dt. (5.5)

Note that (5.4) and (5.5) form a standard LQR problem, i.e., one obtains
the positive definite solution of

P (A−BR−1ST ) + (A−BR−1ST )T P − PBR−1BT P + Q− SR−1ST = 0
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and implements the control ũ = −R−1BT Px in (5.4) to minimizes (5.2) or
(5.5). Implementing this control law in (5.4), however, is equivalent to using
the following control law in our original sysem (i.e., (5.1))

u(t) = ũ(t)−R−1ST x(t) = −R−1(BT P + ST )x(t). (5.6)

Finally, for the problem to work, we need to make the following assumptions:

Assumption 5.2. Matrix S is chosen (e.g., small enough) so that Q̃ = Q −
SR−1ST ≥ 0.

Assumption 5.3. The pair [(A − BR−1ST ) , Q̃], is observable and the pair
[A,B] is controllable.

Remark 5.4. The first assumption above is needed for the cost functional (5.5)
to make sense. The second one is needed for technical (yet important) reasons,
such as stability of the closed loop. Both can be met by having S small enough,
if Q > 0. Also note that we do not need to require [(A − BR−1ST ), B] to be
controllable, if [A,B] was controllable to start with.
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5.2 Regulators with a Prescribed Degree of Stability - α
shifts

Recall that in the infinite horizon problem, we traded the ability to set the
terminal time with the ability to solve the ARE and, hence, come up a much
easier controller (both to calculate and to implement). However, one may ask:
what if the resulting problem reduced x at unacceptably slow rates? In this
subsection, we deal with the case where we wish to kill the state faster than the
standard LQR. To do this, we modify the cost functional. Again we start with
the dynamics

{

ẋ(t) = Ax + Bu
x(0) = xo

(5.7)

but try to minimize

J(xo) =
∫ ∞

0
{ e2αt(xT Qx + uT Ru) } dt, α ≥ 0. (5.8)

Note that this cost functional will try to force x to die at least as fast as
e−αt (why?) The constant α, therefore, can be used to force the controller
to act faster! The problem is that (5.8) creates a time varying LQR problem,
which destroys a great deal of convenience. The question is: Can we trick the
controller so that is solves (5.7) and (5.8) by trying a related time invariant
LQR problem? The answer, as you may have guessed, is yes!

First, we need to define
{

x̂(t) = eαt x(t)
û(t) = eαt u(t). (5.9)

With these definitions, the cost functional in (5.8) can be written as

J(xo) =
∫ ∞

0
{ (x̂T Qx̂ + ûT Rû) } dt

4
= Ĵ(xo). (5.10)

Now, taking the derivative of x̂ in (5.9), we obtain

˙̂x(t) = αeαtx(t) + eαtẋ(t) = αx̂(t) + Ax̂(t) + Bû(t)

or
{ ˙̂x(t) = [A + αI]x̂(t) + Bû(t) = Âx̂(t) + Bû(t)

x̂(0) = xo
(5.11)

Note that (5.11) and (5.7) are equivalent; i.e, one implies another, as long
as we used the definitions in (5.9). Indeed, it is an easy exercise to show that
a given û in (5.11) results in a x̂ which is exactly eαt times the x that results
from implementing u = e−αtû in (5.7)!
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As a result, our original problem is tranformed into minimizing (5.10), sub-
ject to (5.11), which looks like a standard time invariant LQR problem. There-
fore, we solve for the positive definite solution of

Pα(A + αI) + (A + αI)T Pα − PαBR−1BT Pα + Q = 0 (5.12)

where the subscript α is used to underline the fact that P depends on α. Next,
we can write the the optimal control law

û(t) = −R−1BT Pαx̂(t). (5.13)

The last step is to find the control law for the actual system (i.e., (5.7)). For
this, simply note that

u(t) = e−αtû(t) = −eαtR−1BT Pαx̂(t) = −R−1BT Pαx(t). (5.14)

Remark 5.5. The only change from the standard case is that the ARE has
been changed (hence, Pα). Since it is easy to show that the controllability and
observability are not affected by replacing A with (A + αI), controllability and
observability of the original system implies the same properties for the system
in (5.10) and (5.11). Note, however, that this is not necessarily true for stabi-
lizability and detectability.

Remark 5.6. This method is often called ‘the α shift’ for obvious reasons. You
can say that by using A + αI, we are pretending our system to be a lot more
unstable (or less stable). As a result, the control will ‘work harder’ to push
everything further back to the left half plane, since it tries to find a K such that
the eigenvalues of A + BK + αI are in the left half plane. This imples that the
same K would result in closed loop (i.e., A + BK) eigenvalues with real parts
less than −α.
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5.3 The Servo and Tracking Problems

Consider the follwoing system
{

ẋ = Ax + Bu
y = Cx (5.15)

where y is the measured output of the system. The servo and tracking problems
concern the issue of following a trajectory ỹ(t), by minimizing the following cost
functional

J(xo) =
∫ T

0
{ (y − ỹ)T Q(y − ỹ) + uT Ru } dt. (5.16)

where the composition of J is motivated by the need to reduce error between
desired trajectory and output, while having some flexibility with respect to
control effort. We will use the terminal time T so that finite duration control
can also be attempted.

The desired trajectory, ỹ, may be constant or time varying. The treatment
here deals with both. For the sake of simplicity, however, we have dropped
the explicit dependence on t. A typical approach is to first generalize this cost
functional into

J(xo) =
∫ T

0
{ (y− ỹ)T Q2(y− ỹ) + ȳT Q1ȳ + uT Ru } dt, Q ≥ 0, Q1 ≥ 0, (5.17)

where
{

ȳ = C̄x
C̄ = I − LC = I − CT (CCT )−1 C. (5.18)

Remark 5.7. The generalization in (5.17) can be made without any loss of
generality since we can always set Q1 = 0.

Based on the definitions in (5.18), we have
{

CL = I, Cȳ = 0
x = ȳ + x1 , x1 ∈ Range(CT ). (5.19)

Remark 5.8. Considering the basic definitions of orthogonal projections, it is
simple to see that C̄ is the (orthogonal) projection matrix onto the othogonal
complement of range space of CT ; i.e, the null space of C. In other word, ȳ is
part of the state vector that is not seen by y = Cx.

Next, we define
{

x̃ = Lỹ
which ⇒ ỹ = Cx̃. (5.20)
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Note that by (5.20), we have ‘found’ a state trajectory that results in our
desired output trajectory, if passed through C. As a result, we can turn the
output error based cost functional of (5.16) or (5.17) with the following, state
tracking error based, cost functional

J(xo) =
∫ T

0
{ (x− x̃)T [CT Q2C + C̄T Q1C̄](x− x̃) + uT Ru } dt

=
∫ T

0
{ (x− x̃)T Q(x− x̃) + uT Ru } dt. (5.21)

As a result, from now on, we can (without any loss of generality) focus on
problems that have state trajectory error terms in their cost functionals.

5.3.1 The Servo Problem

Let us assume that trajectory is (or could be!) from the following model
{

ż = Fz
ỹ = Hz , (F, H) observable (5.22)

for some H and F . Note that z plays the same role as x̃ in (5.20). The
objective here is to minimize costs of the form (5.21), with x̃, L, etc. as discussed
previously.

Remark 5.9. Equation (5.22) can be used to model a great variety of output
trajectories. For example: every polynomial function of time (of any order).

We can distinguish two cases:

Case 1 z is directly available:

The original system and the model in (5.22) - as well as the cost functional
- can be written in terms of the following augmented system

{

˙̂x = Âx̂ + B̂u
Ĵ =

∫ T
0 { x̂T Q̂x̂ + uT Ru } dt,

(5.23)

where we have used

Â =
(

A 0
0 F

)

, B̂ =
(

B
0

)

, Q̂ =
(

Q −QLH
−HT LT Q HT LT QLH

)

.

(5.24)

From the basic LQR, we know the optimal control law is

u∗(t) = −R−1B̂T P̂ (t) x̂(t) (5.25)
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where P̂ (t) is the solution to the Riccati matrix differential equation
{

− ˙̂P (t) = ÂT P̂ (t) + P̂ (t)Â− P̂ (t)B̂T R−1B̂P̂ (t) + Q̂
P̂ (T ) = 0.

(5.26)

To simplify the controller, let us partition P̂ (t)

P̂ (t) =
[

P (t) P12(t)
PT

12(t) P22(t)

]

. (5.27)

We can write the control law of (5.25) as






u∗(t) = K1(t)x(t) + K2(t)z(t)
K1(t) = −R−1BT P (t)
K2(t) = −R−1BT P12(t)

(5.28)

with














−Ṗ (t) = P (t)A + AT P (t)− P (t)BR−1BT P (t) + Q
−Ṗ12(t) = P12(t)F + AT P12(t)− P (t)BR−1BT P12(t)−QLH
−Ṗ22(t) = P22(t)F + FT P22(t)− P12(t)BR−1BT P12(t) + HT LT QLH
P (T ) = P12(T ) = P22(T ) = 0.

(5.29)

Similarly, it can be shown that the final cost wil be

J∗ = xT
o P (0)xo + 2xT

o P12(0)z(0) + zT (0)P22(0)z(0). (5.30)

Remark 5.10. The initial time of zero was used for simplicity. If needed,
simply replace the appropriate to in the usual places (e.g., in the cost functionals
and in (5.30)). Similarly, we have used no terminal time penalty. This can be
added easily. Start with a P1 to penalize the error in the state tracking at time
T , find the corresponding P̂1 for (5.23)-(5.25). It will only affect, directly, the
final conditions in (5.29).

Remark 5.11. Since the duration is finite, the control is time varying. How-
ever, by inspecting (5.28), you can see that the control has two parts. One is the
exact same term you would get out of standard LQR (i.e., if you were interested
in killing the state and not tracking). The secon part was only dependent on
P12 and z. In effect, this is a feedforward type of compensation! Lastly, note
that the equation for P22 need not be integrated for control, since it is not used
in either of the other two equations. It is only used to evaluate the total cost in
(5.30).

Case 2 z is not available directly:
We simply desgin an observer for the model (5.22) !! The rest is identical

(but much messier!)
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5.3.2 The Tracking Problem

In the last subsection, we discussed the servo problem, in which we assumed
the existence of a model (or another system) which is the sourse of the desired
trajectory (i.e., (5.22)). As a result, we require the knowledge of the model (i.e.,
F and H) and on-line measurement of z (the desired state trajectory). Now,
let us consider the case where the knowledge of F and H is not possible, but we
may know the complete trajectory history (i.e., we know ỹ(t) for all t ∈ [0, T ]).

By remark 5.11, we know that the optimal control has two parts. The part
that we will have problems with is the feedforward term, since its evaluation
required P12(t) which itself needed H and F , see (5.29). So we will start with
the feedformard term

uff (t) = −R−1BT P12(t)z(t) = −R−1BT b(t)

where we have defined b = P12z. Let us take derivative of this vector. After
some minor manipulations, we have

−ḃ(t) = (A−BR−1BT P (t))T b(t)−QLỹ(t) , b(T ) = P12(T )z(T ) = 0, (5.31)

where equations (5.22) and (5.29) are used.

The tracking problem is then solved by integrating (5.31) backward in time
from T to zero and implementing the follwoing control law

u∗(t) = −R−1BT [P (t)x(t) + b(t)].

Remark 5.12. If we let T → ∞, certain simplifications can be made. For
example, the backward integration in (5.31) will be well behaved (since (A −
BR−1BT P ) is the closed loop LQR matrix and stable). Also, if ỹ is constant,
then b(t) actually converges to a constant (think of the integration in (5.31)
as the response of a stable system to constant input) and the feedforward term
becomes a constant, as well (an offset!).
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5.4 PROBLEM SET

Exercise 5.13. Show that if (A,B) is controllable, so is [(A−BR−1ST ), B].

Exercise 5.14. Show the details of the tranformation of (5.2) to (5.5).

Exercise 5.15. Show that controllability and observability are not affected by
replacing A with A + αI. What about detectability and stabilizability?

Exercise 5.16. What is the rate of decay for x(t) if (5.14) is used? Show it by
(1) using x̂ and (2) Lyapunov arguments based on behavior of xT Pαx where Pα

is the solution of (5.12).

Exercise 5.17. What is the value of Jα in terms of Pα? Is Jα ≥ Jα=0 if α ≥ 0?
Hint: Take d

dα of (5.12) and show dPα
dα > 0 through a Lyapunov argument. Then

consider d
dαJα.

Exercise 5.18. Consider (5.18). Show that LC is the orthogonal projection
operator onto the range of CT and, hence, I−LC is the projection onto the null
spave of C.

Exercise 5.19. Again, in (5.18), show (LC)(LC) = LC, (I − LC)LC = 0.

Exercise 5.20. Show (5.17) and (5.21) are the same.

Exercise 5.21. Verify remark 5.9. Hint: Consider an F with all entries zero
with ones on the super diagonal.

Exercise 5.22. Verify (5.23),(5.24) and (5.28)-(5.30).

Exercise 5.23. What happens if there is a terminal penalty term for the servo
problem. Work the details. How does it effect the tracking problem.

Exercise 5.24. Work the details of the remark 5.12.
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6 OUTPUT FEEDBACK DESIGN

When the whole sate vector is not available for feedback, i.e, we can measure
only

y = Cx.

6.1 Review of observer design

Recall from the first class in linear systems that a simple control law would be

u = Kx =⇒ ẋ = (A + BK)x

where K is chosen so that A+BK is stable (from pole placement of LQR, etc).
Now if you can not measure x, then you use an output feedback design. Static
output feedback design; i.e,. u = Ky turns out to be relatively hard to solve
(unless you do trial and error) - more on this later. The most common - and
systematic approach is to use a dynamic output feedback, where the controller
(or compensator) has its own dynamics (recall the typical compensator box from
classical control course). The simplest form is an observer structure; i.e., use
u = Kx̂ where x̂ is an estimate for the actual x and comes from a copy of the
model we construct with our control hardware (or software)

ẋ = Ax + Bu (6.1)
˙̂x = Ax̂ + Bu− L(y − Cx̂) (6.2)

u = Kx̂ (6.3)

The trick, in this simple approach, is to pick a good L such that x̂ −→ x
relatively soon. First, let us write the model in terms of x and e = x− x̂

ẋ = Ax + BKx̂ = (A + BK)x−BKe (6.4)

ė = (A + LC)e (6.5)

(6.6)

which can be written as the following for xT
cl = (xT eT )

ẋcl = Acxcl , Acl =
[

A + BK −BK
0 A + LC

]

since del(Acl) = det(A + BK) . det(A + LC), we have closed loop stability (i.e.
e(t) −→ 0 as time gets larger, which means x̂ −→ x) as long as A + LC stable.
Note that this is independent of the choice of K - a trivial case of ‘separation
principle,’ Also note that the poles of A + LC set how fast e(t) dies. It is
common to use a role of thumb that days the least stable pole of A+LC should
be three times as fast as the dominant modes of A + BK.
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6.2 The Kalman filter and the LQG

In this subsection, we will review -very briefly- Kalman filter equations for the
Linear Quadratic Guassian problem (LQG). Due to the time limitation, this
review will be extremely brief.

Consider the following stochastic linear system
{

ẋ = Ax + Bu + Γζ(t)
y = Cx + η(t) (6.7)

where ζ(t) and η(t) are vector random processes (i.e., the process noise and
measurement noise, respectively).

After ignoring a great deal of effort (and potential pitfalls) with respect to
the well-posedness of (6.7), we assign















E [ζ(t)] = E [η(t)] = 0 (zero mean)
E [ζ(t)ηT (τ)] = 0 (uncorrelated)
E [ζ(t)ζT (τ)] = Qo δ(t− τ) , Qo ≥ 0
E [η(t)ηT (τ)] = Ro δ(t− τ) , Ro > 0

(6.8)

where E is the expectation operator (think ensemble avarage, or in the case of
ergotic signals, time averages). Relying only on the measurement y(t), we wish
to ‘estimate’ the x(t) - and denote the estimate by x̂ - such that the following
error is minimized:

{

e(t) = x(t)− x̂(t)
minimize E [eT (t)e(t)] = min E [‖x(t)− x̂(t)‖2]. (6.9)

After a great deal of work (roughly two quarters of stochastic processes
worth!) the following is obtained for the steady state case:

Observer Equation :

˙̂x(t) = Ax̂(t) + Bu(t) + Kf [y(t)− Cx̂(t)] (6.10)

Kf = SCT R−1
o (6.11)

AS + SAT − SCT R−1
o CS + ΓQoΓT = 0. (6.12)

Note that with this obsever, the error equation becomes

ė(t) = [A−KfC] e(t) + [Γ −Kf ]
[

ζ(t)
η(t)

]

. (6.13)

After noting the similarity of these equations to those of the LQR method,
we have the following :
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Remark 6.1. The Riccati equation in (6.12) resembles the one encountered in
LQR. Notice the duality between the two, by replacing B with CT and A by AT .
As a result, a great many of the results and techniques we discussed earlier apply
here, as well. For example: if (A,C) is observable and (A, Γ) is controllable,
then (6.12) has a unique solution, S > 0, and (A−KfC) is stable.

Remark 6.2. In (6.10) if the noise terms are ignored, then we have an observer
which is obtained from (6.11)-(6.12), and results in a stable closed loop. Further,
if the model has noise (as in (6.7)) then this observer minimizes (6.9), as well.
This is the approach we will choose; i.e., we will use (6.12) and (6.11) to desgin
‘desirable’ observers (rather than pole placement methods, for example). Lastly,
matrices Qo and Ro can be interpreted as the intensity of the process noise and
measurement noise, respectively. A very large Ro, for example, denotes high
levels of measurement noise. One might expect that such a system would end
up with small observer gains (why?), which is indeed true. What is the dual
problem in LQR?

6.3 The Linear Quadratic Guassian Compensator - LQG

Consider the dynamical system in (6.7), subject to (6.8). The LQG problem is
to design a controller of the form

u(t) = f [ y(τ) , τ ≤ t ] (6.14)

to minimize

J = E [ lim
T→∞

1
T

∫ T

o
( xT HT Hx + uT Ru ) dt] (6.15)

under the following assumptions






(A,B), and (AΓ) controllable(stabilizable)
(A,C) and (A,H) observable
Ro > 0 , R > 0 Qo ≥ 0.

(6.16)

The solution to this problem is the following:






























u(t) = −Kcx̂(t)
Kc = R−1BT P
PA + AT P − PBR−1BT P + HT H = 0
˙̂x(t) = Ax̂(t) + Bu(t) + Kf [y(t)− Cx̂(t)]
Kf = SCT R−1

o
AS + SAT − SCT R−1

o CS + ΓQoΓT = 0.

(6.17)
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Remark 6.3. Equation (6.17) imples that the optimal solution can be separated
into full state controller and observer design. This principle of separation in
stochastic control works similar to the one encountered in pole-placement type
controllers (in deterministic setting). Its proof, however, is quite complicated.
Note the control consists of a LQR step plus an observer step (which is the
steady state Kalman filter).
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6.4 Problem Set

Exercise 6.4. Ignoring the noise (i.e., η and ζ), write the combined closed-loop
state space form (in terms of state varaibles x and x̂).

Exercise 6.5. Define the error to be x − x̂. Write the combined closed-loop
state state form in terms of state variables x and e. Are the eigenvalues of the
closed loop system the same as in the previous exercise? Why?

Exercise 6.6. Again, set the noise to be zero. What is the transfer function of
the compensator? That is, if we write the control as in u(s) = H(s) y(s), what
is H(s), where ‘x(s)’ denotes the Laplace Transform of x(t). Try to draw the
block diagram of this problem.

Exercise 6.7. Is the compensator (i.e., H(s)) stable? What are some of the
possible problems with unstable compensators?
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7 MIMO ZEROS

We are interested in MIMO zeros for several reasons. Similar to the SISO
case, nonminimum-phase zeros will effect the performance (degradation) of the
control system. As we will see, the asymptotic behavior of the Riccati equation
depends on the place of the zeros of certain transfer functions. Such results are
somewhat similar to the SISO root-locus arguments on the poles as the gain
becomes large (and the poles go to the open loop zeros).

Nonminimum phase zeros are, unfortunately, common in real life. A common
example is a flexible beam with non-colocated actuator and sensor.

7.1 Transfer Function Approach

We start by going back to the single-input single-output (SISO) case. Consider
the transfer function

G(s) =
s + 2

(s + 3)(s + 4)
.

Now choose the input to be of the form u(t) = uo e−2t. It is simple to show
that this input results in an output of the form y(t) = uoe

−3t− uoe
−4t; i.e., the

output does not contain any terms of the form e−2t. If the input had a term
e−6t, for example, the output would have the term e−6t in it. Indeed, this can be
generalized to second order terms (complex roots). Due to this property, we can
think of the above development as if the system had ‘blocked’ the transmission
of the signal of the form e−2t.

This approach can be generalized to multi-input multi-outputs (MIMO) sys-
tem by using the following for the input

u(t) = uk ezkt

where uk and zk are possibly complex vector and scalar, respectively. Now the
question becomes: Are there any pairs (uk, zk) such that the output of a MIMO
plant does not contain a ezkt term?

Example 7.1. Consider the plant

y(s) = G(s)u(s) =
[

s+1
s2 0
0 s+2

s2

]
u(s)

where it appears that s = −1 and s = −2 are zeros of the system. Indeed, it is
easy to show that

u(t) =
[

1
0

]
e−t ⇒ y(t) without an e−t term

and

u(t) =
[

0
1

]
e−2t ⇒ y(t) without an e−2t term.
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Definition 7.2. A system, G(s), has a transmission zero at s = zk if there
exist vector uk and scalar zk such that u(t) = uk ezkt results in the output y(t)
not containing ezkt terms. The vector uk is called the (zero) direction of zk.

Using slightly different definitions, different kinds of zeros have been intro-
duced, such as ‘blocking zero’ or ‘transmission zero’ or ‘transmission blocking
zeros’ etc. If G(s) is minimal (i.e., controllable and observable) then there is
only one kind of zero, whatever it is called.

Definition 7.3. A unimodular matrix is a square polynomial matrix (i.e., a
matrix with entries polynomial powers of s), where the determinant is a nonzero
constant. The inverse of such a matrix always exists and it is unimodular itself.

7.2 Calculating Zeros

The basic idea is to reduce the problem into finding G1(s), M(s), and N(s),
such that

G1(s) = M(s) G(s) N(s) =




ε1(s)
ψ1(s)

0 0 0 0

0 ε2(s)
ψ2(s)

0 0 0
0 0 . 0 0
0 0 0 . 0
0 0 0 0 εp(s)

ψp(s)




(7.1)

where M(s) and N(s) are unimodular matrices, and for each i, polynomials
εi(s) and ψi(s) are relatively prime (i.e., no common roots) with the additional
property that

ε1(s) | ε2(s) | ε3(s) | . . . | εp(s) (7.2)

and
ψp(s) | ψp−1(s) | . . . | ψ1(s) (7.3)

where A|B denotes ‘A divides B’, without a remainder. Now we can say: The
special form of G1(s) is called the ‘Smith McMillan Form’.

Transmission Zeros of G(s) = Roots of

p∏
1

εi(s) (7.4)

Poles of G(s) = Roots of

p∏
1

ψi(s) (7.5)

Finding the zeros, through the Smith McMillan forms, can be summarized
as follows
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• Find the least common denominator of all of the denominators in G(s).
Call the resulting monic polynomial d(s).

• Form G(s) = 1
d(s)P (s), where P (s) is now a polynomial matrix.

• Through elementary operations - via unimodular matrices - transform
P (s) into the ‘Smith’ form (i.e., the Smith McMillan form with all of the
denominators equal to 1).

• Divide diagonal entries by d(s) to the Smith-McMillan form and read off
the poles and zeros.

• For this process to be successful, the lowest power polynomial should be
placed in the (1,1) element (by elementary operations).

Let us work an example in detail. We start with the following system

G(s) =
1

d(s)
P (s) =

1
(s + 1)(s + 2)




1 −1
s2 + s− 4 2s2 − s− 8

s2 − 4 2s2 − 8


 .

We start the elementary operations: First eliminate the (2,1) and (3,1) elements
by adding a proper multiple of the first row to the second and third rows

P (s) = M−1
1 (s)M1(s)P (s) = M−1

1 (s)P1(s)

with

P1(s) =




1 −1
0 3(s2 − 4)
0 3(s2 − 4)


 .

Next, we eliminate the (3,2) element

P (s) = M−1
1 (s)M−1

2 (s)M2(s)P1(s) = M−1
1 (s)M−1

2 (s)P2(s)

where

P2(s) =




1 −1
0 3(s2 − 4)
0 0


 .

Next, we eliminate the (1,2) element

P (s) = M−1
1 (s)M−1

2 (s)P2(s)N1(s)N−1
1 (s) = M−1

1 M−1
2 (s)P3(s)N−1

1 (s)

where

P3(s) =




1 0
0 3(s2 − 4)
0 0


 .

Lastly, we scale the second column through

P (s) = M−1
1 (s)M−1

2 (s)P3(s)N2(s)N−1
2 (s)N−1

1 (s)
= M−1

1 (s)M−1
2 (s) P4(s)N−1

2 (s)N−1
1 (s)
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where

P4(s) =




1 0
0 (s2 − 4)
0 0


 .

Note that

G(s) =
1

d(s)
P (s) = M−1

1 (s)M−1
2 (s)

1
d(s)

P4(s)N−1
2 (s)N−1

1 (s)

or equivalently, from the definition, pre and post multiplying with Mi(s) and
Ni(s),

G1(s) =
1

d(s)
P4(s), M(s) = M2(s)M1(s), N(s) = N1(s)N2(s).

As a result, we have poles at (-1,-1,-2) and zeros at (+2) (nonminimum phase
zero).
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7.3 Zeros and the State Space Approach

In this subsection, we will discuss finding transmission zeros from the state space
representation of a system. Consider a system with

{
ẋ = Ax + Bu
y = Cx

(7.6)

Associated with this system, let us introduce the following ‘system matrix’

S(s) =
[

sI −A −B
C 0

]
(7.7)

Assumption 7.4. The system is not degenerate, where by degenerate we mean
the rank of S is strictly less than the minimum of [n + rank(B) , n + rank(C)]
for all values of s. If the system is degenerate, one has to be careful. Most codes
fail in such cases. This condition (i.e., nondegenerate) is often expressed as S
having a normal rank equal to the minimum of [n + rank(B) , n + rank(C)].

Definition 7.5. Invariant zeros are those values of s that result in rank of S
becoming less than the minimum of [n + rank(B) , n + rank(C)].

Remark 7.6. If there is direct feedthrough, i.e., y = Cx + Du, simply change
the ‘0’ in the lower right corner of S(s) to D. The rest follows as before.

Remark 7.7. If the system is both controllable and observable (and non-degenerate),
the invariant zeros are the same as the transmission zeros, discussed earlier. In-
deed, there are only one kind of zeros. They can be calculated, for example if
rank of B is smaller, by studying Sx = 0 and turning it into a generalized eigen-
value problem of the form Mx = λNx. Then standard eigenvalue problems can
be used to solve for the eigenvalues (which are the invariant zeros).

When the system is either uncontrollable or unobservable, the problem be-
come more complicated. For example, let (A,C) have an unobservable mode;
i.e., there exists a nonzero vector x such that [Ax = λx , Cx = 0]. Then
this λ is known as an ‘output decoupling’ zero. ‘Input’ decoupling zeros are
defined similarly. In such cases, system zeros are the transmission zeros plus
the decoupling zeros.

Remark 7.8. Decoupling zeros sometimes are invariant zeros, sometimes not!!
Therefore, one has to be careful (see Homework Problems).

Remark 7.9. It is possible not to have any zeros (e.g., 1
s2 ).
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Remark 7.10. Let there be m inputs, and l outputs. Then we have the following

number of zeros ≤ n−max(m, l) if D = 0
number of zeros ≤ n if D 6= 0
number of zeros ≤ n−m− d if D = 0 m = l and
d = rank defficiencyof(CB)

Remark 7.11. Let the number of outputs be at least as large as the number of
inputs (i.e., l ≥ m), then

i) squaring down : s a zero of

[
sI −A −B

C 0

]

⇒ s a zero of

[
sI −A −B

FC 0

]

ii) squaring up : s a zero of

[
sI −A −BG

C 0

]

⇒ s a zero of

[
sI −A −B

C 0

]

iii) s a zero of

[
sI −A −B

C 0

]

⇒ s a zero of

[
sI −A−BKC −B

KC 0

]
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7.4 PROBLEM SET

Exercise 7.12. In the example used earlier, find the unimodular matrices,
M1(s), M2(s), N1(s), N2(s), and their inverses. Finally, what are M(s) and
N(s) that turn the transfer function into the Smith form?

Exercise 7.13. Using the Smith McMillan form, find the poles and zeros of the
following transfer function G(s)

1
(s + 1)(s + 2)(s− 1)

[
(s− 1)(s + 2) 0 (s− 1)2

−(s + 1)(s + 2) (s− 1)(s + 1) (s− 1)(s + 1)

]

Exercise 7.14. Consider the following system

S(s) =




s− 1 0 0 | 0
0 s + 1 0 | 1
0 0 s + 3 | 1

−−−−− −−−− −−−− −−−− −−−−−
1 −1 0 | 0
0 2 1 | 0




Is this system controllable? Is it observable? Is there an input decoupling zero
which is not an invariant zero?

Exercise 7.15. Show the properties of the last remark are true. What are the
corresponding results for the case of m ≥ l?
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8 CONTROL SYSTEM DESIGN

8.1 Single Input Single Output Systems

For the SISO system shown in Figure 8.1, we use the standard notation:

• r(s) : The input command (r(t))

• K(s) : The Compensator

• G(s) : The plant

• u(s) : The control or command (u(t))

• y(s) : The output (y(t))

• d(s) : The disturbance signal (d(t))

• n(s): The sensor noise (n(t))

• e(s) : The error signal (e(t))

Throughout this Section, we will the concern ourselves with the set up of
Figure 8.1: i.e., the so called one degree of freedom framework. For the two de-
gree of freedom approach (which yield similar but not identical results), consult
the textbook by Wolovich. Also, the same text can be considered an excel-
lent source for material covered in this Section. Simple manipulations yield the
following

y(s) =
G(s)K(s)

1 + G(s)K(s)
[r(s) − n(s)] +

1
1 + G(s)K(s)

d(s) (8.1)

Definition 8.1. For a variety of reasons, some of which will be discussed
presently, we will use a few transfer functions repeatedly. These are:

1 + G(s)K(s) = Return Difference Transfer Function (8.2)

S(s) =
1

1 + G(s)K(s)
= Sensitivity Transfer Function (8.3)

T (s) =
G(s)K(s)

1 + G(s)K(s)
= Complimentary Sensitivity Trans. Func. (8.4)

Note that the complimentary transfer function is simply the closed loop
transfer function and G(s)K(s) is just the feedforward loop gain. Also, note
that T (s) + S(s) = 1.

For a good control system design, a variety of issues are taken into consid-
eration. Let us consider a few of the more important ones
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r(s)

+
-

K(s) G(s)

d(s)

+
y(s)

n(s)

Figure 8.1: Block Diagram of a SISO System

1. Sensitivity to Modeling Error

2. Command Following

3. Disturbance Rejection

4. Noise Propagation

5. Stability Robustness

Clearly, this is not a complete list (leaves transient response out, for ex-
ample), but it does cover most of the traditionally critical issues (or design
specifications) faced in control system design. Also, the ordering is somewhat
misleading. Naturally, stability is always the first priority of any control design.

I. Sensitivity to Modeling Error

Let us assume that the actual plant is of the form

G(s) = G∗(s) + δG(s)

where (*) does not mean adjoint! It simply means ideal, and δG(s) reflects the
error between the actual and nominal plants.

(i) open loop: The open loop output is

y(s) = G(s) r(s) = G∗(s) r(s) + δG(s)r(s) = y∗(s) + δy(s)

where y∗ = G∗r is output of the nominal plant and δy is the error between the
nominal and actual outputs. Note that the normalized error has the following
from

δy(s)
δG(s)

= r(s) or
δy(s)
y∗(s)

=
δG(s)
G∗(s)

(8.5)

(i) closed loop: For the closed loop, we have the following . Note that the
dependence on ‘s’ is dropped for brevity
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y =
GK

1 + GK
r =

(G∗ + δG)K
1 + (G∗ + δG)K

r = y∗ + δy

where y∗ is the closed loop response of the ideal -nominal - system; i.e.,

y∗ =
G∗K

1 + G∗K
r

and δy = y − y∗. Next,

1 +
δy

y∗ =
y

y∗ =
G(1 + G∗K)
(1 + GK)G∗ .

As a result, after simplification, we have

δy

y∗ =
δG

G∗ .
1

1 + GK
(8.6)

Remark 8.2. The error in the output, due to error in modeling, is modified
by the sensitivity transfer function (compare (8.5) with (8.6)). As a result, for
the frequencies where δG is ‘large’, relatively speaking, a small sensitivity (or
a ‘large’ GK) can be used to reduce the closed loop sensitivity (compared to
the open loop sensitivity). Notice that we are not discussing stability - only
sensitivity.

II. Command Following
To study command following, set the other inputs to zero; i.e., n = d = 0.

We then have

y =
GK

1 + GK
r

If (1 + GK) is ‘large’, so is - or must be - GK. Therefore, their ratio is
approximately one.

Remark 8.3. Over the frequencies where following r is desired, we want y to
be close to r, or the closed loop transfer function be close to one. As a result,
‘large’ GK is needed. Often, the command signals are in the low frequencies.

III. Disturbance Rejection
Let n = r = 0, to focus of effects of d on the output. We then have

y =
d

1 + GK
or e =

−1
1 + GK

d

Remark 8.4. Over the frequencies where there are large disturbances, it is
desirable to have GK large, to reduce their effects . In most cases, such distur-
bances are in the low frequencies .
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IV. Effects of Noise
We set r = d = 0, to focus on noise (n) in the output measurements. It is

easy to see that

y = − GK

1 + GK
n

In this case, note that we want the effects of noise on the output to be small.
Note that this requires that GK be small.

Remark 8.5. Over the frequencies where there is significant sensor noise (typ-
ically high frequencies), we need ‘small’ GK. As a result, ‘small’ GK is needed.

V. Stability and Robustness
Naturally, we require nominal stability (i.e., the nominal closed loop is sta-

ble). This is the minimum requirement, of course. The more interesting issue
is the stability of closed loop system is the actual model is not the same as the
nominal one.

Let the plant be in the following form

G(s) = G∗(s) [1 + L(s)]

which is called the form with the multiplicative uncertainty . Note that one
can always use L(s) = δG(s)

G∗(s) . We want to study the stability of the closed loop
system of the actual plant, for a range of L(s). Since we will assume very little
knowledge of L(s), we will rely on the Nyquist plots. To this end, we will assume
the following

Assumption 8.6. The number of unstable poles of G(s) - the actual plant - is
the same as the number of unstable poles of the nominal plant G∗(s).

Assumption 8.7. An upper bound for the magnitude of the uncertainty is
available; i.e, a function l(w) is available such that |L(jw)| ≤ l(w). No other
assumptions is made regarding L(s).

Assumption 8.8. The controller, K(s) is chosen so that the nominal closed
loop system is stable.

Assumption 8.6 is needed so that the encirclement count of the Nyquist plots
remains constant over all allowable uncertainty. Recall the following from the
standard SISO systems.

Definition 8.9. The closed loop system is stable if K(jw)G(jw)+1 �= 0 and the
encirclements (of plots of K(jw)G(jw)) around (−1, 0) point (on the complex
plain) is not changed -for all allowable L(s)- from that of the nominal system
(i.e., K(jw)G∗(jw)).
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Figure 8.2: Nyquist plot for multiplication uncertainty

One way, to guarantee that a change in the encirclement count is avoided,
is by noting that we need

1 + K(jw)G∗(jw) + K(jw)G∗(jw)L(jw) �= 0

and thus by requiring the following

|L(jw)G∗(jw)K(jw)| ≤ |1 + G∗(jw)K(jw)| (8.7)

which is satisfied if the following holds

|L(jw)| ≤ l(w) ≤ |1 + G∗(jw)K(jw)|
|G∗(jw)K(jw)| (8.8)

or |K(jw)G∗(jw)|
|1 + K(jw)G∗(jw)| <

1
l(w)

. (8.9)

Remark 8.10. In practice, good models can be obtained over low frequencies.
As a result, typical form of l(w) is a curve that grows and becomes large as w
increases. On large frequencies, therefore, the nominal transfer function must
be very small, as a result, small KG∗ are desired over high frequencies (or
frequencies where large modeling errors exist).

As a result of the above discussion, we arrive at the typical shape that we
expect the Bode plot to have (see Figure 8.3). The exact cut-offs and lower
and higher bound, of course, depend on the exact specifications of the control
system.
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Figure 8.3: A typical desirable Bode Plot

8.2 Multi Input Multi Output Systems

We go parallel to the SISO case (as far as we can). The block diagram will look
the same, for example. We will use upper case letters for signals U(s), Y (s),
etc. to underline the fact that they are vectors. We start by using

E(s) = R(s) − Y (s) − N(s) and Y (s) = D(s) + G(s)K(s)E(s)

Remark 8.11. In MIMO systems, K(s)G(s) �= G(s)K(s), and you need to be
careful. Typically, they appear in reverse order of the block diagram; i.e.

U(s) = K(s)E(s) and Y (s) = G(s)U(s) + D(s) = G(s)K(s)E(s) + D(s)

Next, we have

Y (s) = D(s) + G(s)K(s)R(s) − G(s)K(s)Y (s) − G(s)K(s)N(s)

or solving for Y (s)

Y (s) = [I +G(s)K(s)]−1G(s)K(s)[R(s)−N(s)]+[I +G(s)K(s)]−1D(s) (8.10)

where similar to the SISO systems we can define

I + G(s)K(s) = Return Difference Transfer Function (at the output)
(8.11)
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Figure 8.4: Block Diagram of a MIMO System

S(s) = [I + G(s)K(s)]−1 = Sensitivity Transfer Function (at the output)
(8.12)

T (s) = [I + G(s)K(s)]−1G(s)K(s)
= Complimentary Sensitivity Transfer Function

(8.13)

As before, it is easy to see that T (s) is the closed loop transfer function and

T (s) = S(s)G(s)K(s), T (s) + S(s) = I (8.14)

Similar to the SISO case, we will study the following issues

1. Sensitivity to Modeling Error

2. Command Following

3. Disturbance Rejection

4. Noise Propagation

5. Control Effort

6. Stability Robustness

Before going through each case, let us discuss the notion of ‘large’ and ‘small’
for MIMO systems. In the SISO case, everything was relatively simple; we took
the absolute value of the transfer function, evaluated on the imaginary axis.
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That is, we looked at |G(jw)|, which is consistent with standard notion of Bode
plots (input at that frequency gets magnified by the size of the transfer function).

For MIMO system, we also consider what the transfer function does to the
incoming signal. We call a transfer function ‘large’ if it magnifies the amplitude
of signal, and ‘small’ if it does the reverse. The problem is that our inputs and
outputs are vectors themselves.

From now on, a signal is considered large if its 2-norm (in frequency or time
domain - recall Parseval’s Theorem) is large. Therefore, we are interested in
seeing what does a given transfer function do to the 2-norm of its input. Now
considering the basic properties of the singular value, we have

Y (jw) = G(jw)U(jw) ⇒ σ[G(jw)] ‖U(jw)‖2 ≤ ‖Y (jw)‖2

≤ σ[G(jw)] ‖U(jw)‖2

where the maximum (or minimum) is over all frequencies. A ‘small’ transfer
function, therefore, has a small maximum singular value and a ‘large’ transfer
function has a large minimum singular value. These singular values indicate the
best and worst case magnification a signal (at a given frequency) may experience.
Also, due to Parseval’s Theorem, these principle gains can be interpreted at L2

gains for the convolutions (e.g., given a signal with unit energy what are the
upper and lower bounds on the energy of the output).

With this in mind, we can go over the design issues listed above.

I. Sensitivity to Modeling Error

Let us assume that the actual plant is of the form

G(s) = G∗(s) + ∆G(s)

where G∗(s) is the nominal or ideal plant , and ∆G(s) reflects the error between
the actual and nominal plants. The following can be shown relatively easily (see
the Problem Set!)

(i) open loop

∆Y (s) = ∆G(s) [G∗(s)]−1 Y ∗(s) (8.15)

(i) closed loop

∆Y (s) = [I + G(s)K(s)]−1 ∆G(s) [G∗(s)]−1 Y ∗(s) (8.16)

Remark 8.12. The error in the output, due to error in modeling, is modified by
the sensitivity transfer function (compare (8.15) with (8.16). As a result, for the
frequencies where ∆G is ‘large’, we have large open loop sensitivity. To reduce
this sensitivity, the sensitivity transfer function can be exploited.
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To reduce sensitivity, we require the maximum singular value of S(s) be
small. Recalling the property that σ(A) = 1

σ(A−1) , we arrive at the requirement
that minimum singular value of the return difference transfer function be large.
Recalling the property that σ(I + A) is between (σ(A) − 1) and (σ(A) + 1),
we conclude that σ(G(s)K(s)) should be large, over frequencies of interest (i.e.,
where we want little sensitivity). Often, such a requirement is written as re-
quiring

σ[G(jw)K(jw)] ≥ p(w). (8.17)

The function p(w) can thus be used to set the levels and ranges of the
frequencies of interests (e.g., p(w) large at low frequencies, to ensure little sen-
sitivity to modeling errors in such a range).

II. Command Following
As before, to study command following, set the other inputs to zero; i.e.,

N = D = 0. We then have

Y (s) = T (s) R(s) .

Therefore for good command following over the frequencies of interest (i.e.,
most often low frequencies), we need T (s) be approximately identity. Since
I = T (s) + S(s), this requires very small S(s). The rest follows as before and
we end up with requirement of high minimum singular value for G(jw)K(jw).

Remark 8.13. Over the frequencies where following R is desired (i.e, typically
low frequencies), large σ[GK] is desired.

III. Disturbance Rejection
Let N = R = 0, to focus of effects of D on the output. Considering (8.10),

to reduce the effects of disturbance on the output, S(s) should be small, over
the range of disturbance frequencies. Similar to the sensitivity analysis, we will
need large σ[G(jw)K(jw)], for the range of frequencies with large disturbance
(typically, low frequencies).

Next, we consider cases that may require small σ[G(jw)K(jw)].

IV. Effects of Noise
We set R = D = 0, to focus on noise (N) in the output measurements.

Again, we examine (8.10). We have seen that large σ[GK] results in T (s) ≈ I,
which is certainly undesirable for those frequencies with large noise component.
To reduce noise, we need to make T (s) as small as possible (over these noisy fre-
quencies). That is, we want σ[T (jw)] be very small. Since σ(AB) ≤ σ(A)σ(B),
we have

σ[T (jw)] ≤ σ[S(jw)]σ[G(jw)K(jw)] =
σ[G(jw)K(jw)]

σ[I + G(jw)K(jw)]
(8.18)
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Since σ(I + A) is between (σ(A) − 1) and (σ(A) + 1), the fraction on the
right hand side of (8.18) can be made small if we make σ[G(jw)K(jw)] very
small (see the Problem Set).

Remark 8.14. Over the frequencies where there is significant sensor noise
(typically high frequencies), we need ‘small’ GK. As a result, small σ[GK] is
needed.

V. Control Energy

One can show that

U(s) = K(s)S(s)[R(s) − N(s) − D(s)] (8.19)

So to reduce control energy, one would seek small σ[K(s)S(s)]. Dropping
the dependency of ‘s’ for brevity, we can rewrite this as

σ[K[I + GK]−1] ≤ σ(K)σ[I + GK]−1 ≤ σ(K)
σ[I + GK]

.

The goal now is to reduce the RHS of the above equation, which implies needing

σ[I + GK] � σ(K).

Now, since σ[I + GK] ≤ σ[I + GK] ≤ I + σ(K)σ(G), we must be seeking

I + σ(K)σ(G) � σ(K) or
1

σ(K)
+ σ(G) � 1. (8.20)

Now consider two regions and the typical behavior of G(jw) in these regions:
a) Low Frequencies: G(jw) is large, which implies (8.20) can be realized.
b) High Frequencies: G(jw) is small, which implies (8.20) can be realized if
σ(K) is very small. Since σ(GK) ≤ σ(G)σ(K), the need for low control energy
requires a low σ(GK) over high frequencies.

In summary, for small control effort, the maximum singular value of GK
should be small at the high frequencies. Naturally, similar results could have
been obtained in the SISO case, as well.

Remark 8.15. A similar result can be obtained by the following: Assume square
and invertible G and K, and show that high σ(GK) results in an approximate
relationship U ≈ G−1[R − N − D]. Therefore, any reference, disturbance or
noise at high frequency results in very high control energy.

VI. Stability Robustness

As you might expect, we will be following the development of the SISO
systems. First, however, we need to review the MIMO version of the Nyquist
criterion
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Definition 8.16. G(s) is stable if the number of the encirclements (around the
origin) of the map det[I + G(jw)K(jw)], evaluated on the Nyquist D-contour,
is equal to the negative of the number of unstable open-loop modes (poles) of
G(jw).

We start by assuming the following relationship between the actual plant
(i.e., G(s)), and nominal plant (i.e., G∗(s)).

G(s) = [I + L(s)] G∗(s) . (8.21)

We are modeling the uncertainty as multiplicative at the output. Note that
for MIMO systems, at the output and at the input are not the same. As with
the SISO system, we make the following assumptions:

Assumption 8.17. The nominal closed loop system is stable (meets the MIMO
Nyquist criterion and determinant of I + G∗K] is not zero at any frequency)
and the number of unstable poles G(s) - the actual plant - is the same as the
number of unstable poles of the nominal plant G∗(s).

Assumption 8.18. An upper bound for the magnitude of the uncertainty is
available; i.e, a function l(w) is available such that

σ[L(jw)] ≤ l(w) ∀w.

.

As before, we will simplify notation by dropping ‘jw’. For stability, the
assumptions above imply that it is sufficient to have det[I + (I + L)G∗K] �= 0
for all allowable L(jw). Therefore, we need

σ[I + (I + L)G∗K] > 0 ∀w . (8.22)

Note, however, that

I + (I + L)G∗K = I + G∗K + LG∗K = [I + LG∗K(I + G∗K)−1](I + G∗K)

assuming the inverse exist (Not a big assumption: nominal stability). Next,

σ[I + (I + L)G∗K] ≥ σ(I + G∗K) σ[I + LG∗K(I + G∗K)−1]

where, by nominal stability, the first term on the right is nonzero. As a result,
we focus on the second term and see if we can make it nonzero. Clearly (see
Problem Set), this term is nonzero if we require

σ(I) = 1 > σ[LG∗K(I + G∗K)−1]

or equivalently if

1 > σ(L)σ[G∗K(I + G∗K)−1] ≥ σ[LG∗K(I + G∗K)−1]
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Figure 8.5: Max and Min singular value plots

Since l(w) ≤ σ(L), then (8.22) holds if

1 > l(w)σ[G∗K(I + G∗K)−1] ≥ σ[LG∗K(I + G∗K)−1]

or
1

l(w)
> σ[G∗K(I + G∗K)−1]. (8.23)

So far so good. Since in high frequencies, we have l(w) � 1, stability ro-
bustness - i.e., (8.23) - dictates a small maximum singular value for the nominal
transfer function (note the very small trick involved). From previous develop-
ment, we know that this requirement is the same as having small σ(GK) over
high frequencies.

As a result of the above development, we arrive at the plots in Figure 8.5 for
the max and min singular values of GK. Finally, before we leave this Section,
we can study a few interesting issues:

1. Invert (8.23) to get

l(w) <
1

σ[G∗K(I + G∗K]−1]
= σ[I + (G∗K)−1]. (why?) (8.24)

The right hand side, therefore, defines the amount of modeling error a given
nominal closed loop system can tolerate. In can be interpreted as the MIMO
version of gain margin!!

2. What about performance in presence of uncertainty?
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Earlier, we discussed sensitivity and model following, and other low fre-
quency requirements in terms of G(s), the actual or nominal. In many applica-
tions this may be acceptable since most modeling errors occur in high frequen-
cies. However, if there were low frequency model error; i.e., l(w) was not zero
at low frequencies, we need to review the results.

Equation (8.17) implies that

σ[I + G(jw)K(jw)] ≥ p(w) G(jw) = (I + L(jw))G∗(jw)

while by (8.23)

σ[G∗K(I + G∗K)−1] <
1

l(w)
.

Now assume that l(w) ≤ 1 in the low frequencies (i.e., nonzero, but moderate
levels of uncertainty at low frequencies). Then

p(w) ≤ σ[I + (I + L)G∗K] = σ{[I + LG∗K(I + G∗K)−1][I + G∗K]} (8.25)

using σ(AB) ≥ σ(A)σ(B), (8.25) is satisfied if

p(w) ≤ σ[I + LG∗K(I + G∗K)−1]σ[I + G∗K]. (8.26)

Now, if we assume that the nominal system has high gains at low frequencies,
we can use σ[G∗K] � 1 in low frequencies, which implies σ[I+G∗K] ≈ σ[G∗K],
with G∗K nonsingular and T (jw) ≈ I. Equation (8.26) is therefore equivalent
to

p(w) ≤ σ(I + L) σ(G∗K). (8.27)

Since σ(AB) ≥ σ(A) − σ(B), (8.27) must be satisfied if

p(w) ≤ (1 − l(w)) σ[G∗K]

or

p(w)
1 − l(w)

≤ σ[G∗K] (8.28)

that is, the modeling uncertainty at low frequencies makes the job of the con-
troller (for performance type measures) more difficult.

8.3 A Few Matrix Identities

Let A and C be nonsingular matrices of possibly different dimensions. If there
are, possibly nonsquare, matrices B and D such that BCD is the same dimen-
sion as A, then

(A + BCD)−1 = A−1 − A−1B(C−1 + DA−1B)−1DA−1. (8.29)

8–13



The matrix inversion lemma can be applied to a variety of cases. Some, exploit
the fact that the dimension of the matrices that require inversion may be smaller
on the right hand side. Consider the following - where matrices G1, G2, etc.
can be either constant of functions of time or ‘s′

[In + G2 G1 H2 H1]−1G2 G1 = G2[Im + G1H2H1G2]−1G1 (8.30)
= G2G1[Ir + H2H1G2G1]−1 (8.31)
= G2G1 − G2G1H2[Ip + H1G2G1H2]−1H1G2G1

(P 1 + KC)−1 = P − PK(I + CPK)−1CP (8.32)

(I + KCP )−1 = I − K(I + CPK)−1CP (8.33)

(I + PKC)−1 = I − PK(I + CPK)−1C (8.34)

(I + G)−1 + (I + G−1)−1 = I for G square and invertible (8.35)

σ[(I + G)−1] + σ[(I + G−1)−1] ≥ 1 (8.36)

σ[(I + G)−1] + 1 ≥ σ[(I + G−1)−1] (8.37)

σ[(I + G−1)−1] + 1 ≥ σ[(I + G)−1] (8.38)

σ(G) ≥ σ(I + G)
σ(I + G−1)

≥ σ(G) (Use σ(AB) ≤ σ(A)σ(B) ) (8.39)

8–14



8.4 PROBLEM SET

Exercise 8.19. Show (or prove of whatever) properties P1-P3 of singular val-
ues.

Exercise 8.20. Show (or prove of whatever) properties P4-P13 of singular
values.

Exercise 8.21. Show or derive equations (8.15) and (8.16).

Exercise 8.22. Show (I + GK)−1GK = I − (I + GK)−1.

Exercise 8.23. Show that σ[G(jw)K(jw)] 	 1 implies σ[T (jw)] 	 1, where
T (s) is the closed loop transfer function.

Exercise 8.24. Derive equation (8.19).

Exercise 8.25. Let A > 0. Show that if σ(A) > σ(B), then A + B > 0.

Exercise 8.26. Do as many as the matrix identities of the previous section.
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9 LOOP SHAPING AND RECOVERY

In this Section, we will look for ways to obtain desirable loop shapes (as
discussed in the previous Section) by the LQR technique. We will also look into
effects of observers of the closed loop shapes and ways to ‘recover’ the desirable
loop shapes we can get with LQR, when observers are needed (i.e., we cannot
measure the full state).

9.1 The KALMAN Equality

Let us start with the steady state Riccati equation

PA + AT P − PBR−1BT P + Q = 0 (9.1)

and the optimal gain matrix

u = −Kx, K = R−1BT P. (9.2)

From (9.2), it is clear that the following identities hold

R
1
2 K = R− 1

2 BT P (9.3)

KT RK = PBR−1BT P. (9.4)

The Riccati equation of (9.1) can be written as

PA + AT P − KT RK + Q = 0,

or after some manipulations

P (sI − A) + (−sI − AT )P + KT RK = Q. (9.5)

Now after multiplying (9.5), on the left, by R− 1
2 BT (−sI − AT )−1 and, on

the right, by (sI − A)−1BR− 1
2 , we will get

R− 1
2 BT (−sI − AT )−1P (sI − A)(sI − A)−1BR− 1

2

+R− 1
2 BT (−sI − AT )−1(−sI − AT )P (sI − A)−1BR− 1

2

+R− 1
2 BT (−sI − AT )−1KT RK(sI − A)−1BR− 1

2

= R− 1
2 BT (−sI − AT )−1Q(sI − A)−1BR− 1

2 ,

or, considering (9.3) and (9.4),

R− 1
2 BT (−sI − AT )−1KT R

1
2 + R

1
2 K(sI − A)−1BR− 1

2

+R− 1
2 BT (−sI − AT )−1KT RK(sI − A)−1BR− 1

2

= R− 1
2 BT (−sI − AT )−1Q(sI − A)−1BR− 1

2 .
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The left hand side of this equation is of the form Y T + X + Y T X. Adding
I to both side and noting that (I + Y )T (I + X) = I + Y T + X + Y T X, we have

[I + R
1
2 K(−sI − A)−1BR− 1

2 ]T [I + R
1
2 K(sI − A)−1BR− 1

2 ] =
I + R− 1

2 BT (−sI − AT )−1Q(sI − A)−1BR− 1
2 .

(9.6)

Equation (9.6) is known as the Kalman equality (the better known Kalman
inequality is very similar; i.e. Left Hand Side (LHS) of (9.6) ≥ I, for all w,
where s = jw!).

9.2 Asymptotic behavior of Riccati equation

The book by Kwakernaak and Sivan is the primary source of this section (as
well as a paper by B. Francis). Again consider the Riccati equation of (9.1),
except we let

R = ρ2N, and Q = HT H (9.7)

without any loss of generality. We will study the behavior of the positive definite
solution of (9.1) as ρ tends to infinity and zero.

Result A: ρ → 0
The limit:

lim
ρ→0

Pρ = Po

exists. Also, let zi’s, i = 1, 2, . . . p, be the transmission zeros of the system
H(sI −A)−1B (which is assumed to be controllable and observable). Then the
closed loop poles approach zi’s if zi is on the closed left half plane (and to −zi

if is on the right half plane). The remaining (n − p) poles go to infinity in a
Butterworth pattern.

Lastly, if the transfer function H(sI −A)−1B is right invertible with no
unstable zeros, then Po = 0. Furthermore, is this case, for some unitary W
(i.e, WWT = I)

K = R−1BT P → R− 1
2 WH =

1
ρ
N− 1

2 WH (9.8)

Result B: ρ → ∞
In this case the closed loop pole approach the open loop poles (if stable) or their
mirror image with respect to the imaginary axis (if unstable). If the open loop
poles are stable, the gain matrix approaches zero.
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9.3 Good LQR loop shapes

Recall that for robustness and performance, we would like to shape KG ac-
cording to some specifications. For MIMO systems, this ‘shaping’ corresponds
to limiting, from below, the minimum singular value of KG or GK over low
frequencies and from above, the maximum singular value of KG, over high fre-
quencies. In the following, we will review a method that uses many of the topics
we have covered in class.

For simplicity, we make the following assumptions

Assumption 9.1. Without any loss of generality, we assume that

R = ρ2I, Q = HT H. (9.9)

Recall that for the LQR problem

K(s)G(s) = K(sI − A)−1B = KΦ(s)B (9.10)

where
K = R−1BT P =

1
ρ2

BT P, and Φ(s) = (sI − A)−1. (9.11)

Since we are concerned with frequency characteristics of the system, in the
remainder if this section we will replace s by jw.

For the particular choice of Q and R used here, the Kalman equality of (9.6)
becomes

[I + K(jwI − A)−1B]h[I + K(jwI − A)−1B]

= I +
1
ρ2

[H(jwI − A)−1B]h[H(jwI − A)−1B] (9.12)

where the superscript ‘h′ denotes complex conjugate transpose. Using (9.11), we
can rewrite (9.12) as

[I + KG]h [I + KG] = I +
1
ρ2

[HΦB]h [HΦB] (9.13)

which implies

λi ([I + KG]h [I + KG]) = 1 +
1
ρ2

λi ([HΦB]h [HΦB)

which, considering the basic definition of singular values, reduces to

σi([I + KG]) =
√

1 +
1
ρ2

σ2
i ([HΦB]). (9.14)
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Equation (9.14) can be used for low frequency performance. Recall that we
typically need very large minimum singular values for KG over these frequencies.
Therefore a good approximation from, (9.14), over these low frequencies, is

σmin(KG) ≈ 1
ρ
σmin(HΦB). (9.15)

As a result, using the free design parameters, i.e., H and ρ, one can in-
crease the minimum singular value. Note that this method is approximate; i.e.,
equation (9.15) is used to get initial estimates for H and ρ, that satisfy the
performance requirements. These estimates are used in the Riccati equation to
obtain exact values. (Also, note the inherent trial and error nature). Finally,
the exact form of H can be used to make the minimum and maximum singular
values closer to one another (particularly over the cross over region).

For robustness, we need to investigate the following conditions

1
�m(w)

> σ(I + KG)−1KG, ∀ w (9.16)

or, equivalently, (recall the last Section)

σ(I + [KG]−1) > �m(w). (9.17)

From (9.14), it is clear that

σ(I + [KG]) > 1, ∀ w. (9.18)

A few decades ago, Alan Laub showed that (9.18) implies that

σ(I + [KG]−1) >
1
2
, ∀ w (9.19)

that is, the LQR controller provides a small robustness bounds for all frequen-
cies automatically. Typically, the bound on the uncertainty (�m(w)) becomes
larger at high frequencies (considerably larger than 1). In high frequency range,
therefore, we need to be concerned with the behavior of the maximum singular
value of KG (recall the previous Section).

Now, we will need the following assumption

Assumption 9.2. The transfer function H(sI−A)−1B is minimum-phase and
right invertible.

From the asymptotic behavior of the Riccati equation, we have (recall that
we are using N = I in (9.8))

Kc → 1
ρ
WH, as ρ → 0 (9.20)
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where W is an orthogonal matrix. Finally

KcG = Kc(sI − A)−1B = Kc
1
s
(I − A

s
)−1B

At high frequencies, (i.e., s = jw and w very large), as ρ approaches zero, we
can approximate KG by

KcG −→ ≈ WHB

jwρ
, i.e., σ (KcG) −→ ≈ σ (

HB

jwρ
) (9.21)

Equation (9.21) can be used for robustness synthesis. Using (9.21) as an
approximate value for high frequencies (and small values of ρ), the parameters
H and ρ can be sought that satisfy both the performance requirements and the
robustness requirements; i.e., keeping the maximum singular value of KG small
at high frequencies and minimum singular value of KG large at low frequencies!

While a very small ρ would guarantee the satisfaction of (9.15), it might
result in violation of the high frequency requirement (via (9.21)), over some
of the intermediate frequencies. A typical consideration is the crossover fre-
quency. The crossover frequencies are defined at those frequencies that result
in σi(KG) = 1, for some i. Let wcmax correspond to the maximum singular
value of KG becoming one (note that wcmax ≈ σ(HB)

ρ ). After some thought
(and maybe a touch of voo-doo), it becomes clear that this wcmax should be not
much larger (or preferably even smaller) than wl (i.e., the frequency where �m

becomes 1).

Another interesting point is that (9.21) implies that KG rolls off at, approx-
imately, 20 db rate. If �m(w) grows faster than that, the crossover frequencies
should be moved to the left.

9.4 Loop Transfer Recovery - LTR

So far, we have seen that LQR can be manipulated so that a desirable loop is
obtained. Actually, other interesting results have been proven. For example,
the concept of gain and phase margins have been extended to the MIMO case
and LQR is shown to have infinite gain margin and sixty degrees phase margin.
Due to our time constraint, we will omit these.

In 1978, John Doyle showed that all these nice margins can be lost once
the observer is added (i.e., LQG does not necessarily have the same margins as
the LQR). Around 1981, Doyle, along with Gunter Stein, followed this line by
showing that the loop shape (of GK or KG) itself will, in general, change when
the filter is added for estimation . well? What to do? where to go? The basic
idea is very simple: suppose the LQR design has resulted in a great loop shape.
What can be done (and indeed if) to recover the nice loop shape, if an observer
is needed.
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9.4.1 The Basic Idea

We will start with the basic system

G(s) = C(sI − A)−1B = CΦB. (9.22)

where, as before,
Φ = (sI − A)−1. (9.23)

Without specifying the controller or observer gain matrices, we can represent
the full state closed loop systems and the observer-based closed loop system with
the state space form; i.e.

Full State: {
ẋ = Ax + Bu
u = −Kx

(9.24)

Observer-based:


ẋ = Ax + Bu
˙̂x = Ax̂ + Bu + F (y − Cx̂) = (A − FC)x̂ + Bu + Fy
u = −Kx̂

(9.25)

Taking the Laplace transform of (9.24) and (9.25) would result in

x(s) = ΦBu(s) (9.26)

(sI − A)x̂(s) = Bu(s) + Fy(s) − FCx̂ = −(BK + FC)x̂(s) + Fy(s) (9.27)

From now on, for brevity, we will use y instead of y(s) , etc. The dependence
of y, u etc on s will be clear from the context. We can now make a few interesting
remarks:

1. Note that the compensator may not be stable!

u = −K(Φ−1 + BK + FC)−1Fy = −KΨFy (9.28)

where by Ψ we clearly mean

Ψ = (sI − A + BK + FC)−1. (9.29)

2. We may also consider the LQR controller as a controller designed for general
purpose (and not necessarily regulation). So consider Figures 9.1 and 9.2, where
the closed loop system is presented in the block diagram form, with potentially
nonzero reference input r. Keep in mind that LQR/LQG are designed for the
regulation problem, but for other performance specifications (robustness, noise
property, etc), the overall shape of the loop might be of some interested. Now,
note that the transfer function from the reference to input is the same in full
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Figure 9.1: Block diagram for the full state controller
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Figure 9.2: Block diagram for the observer based controller
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Figure 9.3: Multiplicative uncertainty at the input

state (Figure 9.1) and observer based controllers (Figure 9.2). For the full state
case

u = r−Kx = r−KΦBu → u = (I+KΦB)−1r → x = ΦB(I+KΦB)−1r (9.30)

while for the observer

(sI − A + FC)x̂ = Bu + FCx = Bu + FCΦBu

or
(sI − A + FC)x̂ = (Φ−1 + FC)ΦBu −→ x̂ = ΦBu (9.31)

the rest follows exactly as the full state case to obtain

x̂ = ΦB(I + KΦB)−1r. (9.32)

From now on, we will focus of the regulator problem and thus r = 0. Also,
consider Figures 9.1 and 9.2, assume that we will consider ‘breaking’ the loop at
two places; X and XX (the reason for this will become obvious below). Therefore
we can consider u the output of the compensator and u′ and u′′ the input in
the plant, depending on where the loop is broken.

Let us discuss the motivation for this. Consider the block diagram of Figure
9.3. The configuration is called ‘multiplicative uncertainty at the input’, and
results in plants of the form G(I + L). Recall that during the compensator
design, only the nominal system is used. Information on L(jw), however, is
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used to design a compensator that accommodates this uncertainty (e.g., the
loop shape for KG or GK). Clearly, u and u′′ are not the same signal. The
first is the output of the compensator and the second is the actual input to the
plant (that is u after going through the uncertain dynamics, hence the name of
uncertainty at the input!). Furthermore, regardless of the form of controller, the
transfer function from u′′ to u is exactly KG! (check this yourself). If robustness
with respect to uncertainty is your concern, you better make sure the KG (or
GK, if appropriate) of the final compensator satisfies the requirements.

Now we can continue with our rambling.

3. In both Figures 9.1 and 9.2, the transfer function from u′ to u is −KΦB. (To
see this better, assume that there are unmodeled junk between u and u′. The
actual output to the plant is therefore u′, while the output of the compensator
is u).

FullState : u = −Kx = −KΦBu′

Observer : u = −Kx̂
?= −KΦBu′

but u′ in this case is the plant input and similar to (9.31), we can obtain x̂ =
ΦBu′. The rest is obvious.

This fact is not particularly interesting! After all, considering Figure 9.2, the
point u′ is still inside the compensator box! A more reasonable way of incor-
porating unmodeled dynamics is to break the loop outside of the compensator
(point X) and consider the transfer function from u′′ to u for both controllers.

For the full state feedback, we still have x = ΦBu′′, therefore

u = −KΦBu′′. (9.33)

For the observe, however, things get rather complicated

x̂ = ΦBu + ΦFCΦBu′′ − ΦFCx̂ (9.34)

taking into account the control law in (9.25)

x̂ = (I + ΦFC + ΦBK)−1ΦFCΦBu′′ (9.35)

or equivalently

u = −K(I + ΦFC + ΦBK)−1ΦFCΦBu′′. (9.36)

Considering the fact that CΦB is the plant (i.e., G(s)) and u′′ the input, we
see that CΦBu′′ is nothing but the output. Equation (9.36) is therefore of the
form u = P (s)y, where P is the compensator. In summary, the transfer function
from u′′ to u in (9.36) is the ‘KG’ of the observer based controller! (which, by
now, should not surprise you).
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Equation (9.36), in general, is not the same as (9.33). To explore the possi-
bility of making them the same, let us rewrite (9.35). We start by rearranging
(9.34)

(Φ−1 + FC)x̂ = Bu + FCΦBu′′

or
x̂ = (Φ−1 + FC)−1[Bu + FCΦBu′′] (9.37)

but, from the matrix inversion lemma, we have

(Φ−1 + FC)−1 = Φ − ΦF (I + CΦF )−1CΦ. (9.38)

Simple manipulations show that

[Φ − ΦF (I + CΦF )−1CΦ]B = Φ[B − F (I + CΦF )−1CΦB] (9.39)

and

[Φ − ΦF (I + CΦF )−1CΦ]FCΦB = ΦF [I − (I + CΦF )−1CΦF ]CΦB

= ΦF (I + CΦF )−1CΦB. (9.40)

HERE COMES THE LIGHTENING! If we had

F (I + CΦF )−1 = B(CΦB)−1 (9.41)

from (9.37) to (9.40), the transfer function from u′′ to u, via (9.37) would become

u = −KΦBu′′ ! ! !

that is , the same as the full state feedback. Choosing F such that (9.41) holds
is the central idea of the LTR method. This is not as easy as you might think!
To see the difficulty, consider the following. Equation (9.41) implies that

ΦF (I + CΦF )−1CΦB = ΦB. (9.42)

However, from matrix inversion lemma, we can write

ΦF (I + CΦF )−1CΦ = Φ − (Φ−1 + FC)−1.

For (9.42) to hold, in light of the previous equation, we need

(Φ−1 + FC)−1B = 0 ∀ w. −→ (jwI − A + FC)−1B = 0 ∀w,

which is not an easy condition to satisfy. The traditional approaches to this
problem end up having observer gains that get larger and larger and satisfy this
condition only asymptotically.
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9.4.2 Observer Design

Recall (9.41). We would like to design an observer such that the gain satisfies

F (I + CΦF )−1 = B(CΦB)−1.

One way to satisfy this is to have F = Fq (i.e., F a function of scalar q) such
that

Fq

q
−→ BW , W nonsigular. (9.43)

In that case

F (I + CΦF )−1 =
Fq

q
q(I + CΦFq)−1 =

Fq

q
(
I

q
+ CΦ

Fq

q
)−1

and as q −→ ∞, we get

F (I + CΦF )−1 → BW (CΦBW )−1 = B(CΦB)−1

which is (9.41). Therefore, instead of (9.41), we can focus on (9.43). Now
consider the Kalman filter equation

AS + SAT + Qf − SCT R−1CS = 0, F = SCT R−1 (9.44)

Instead of a typical Qo, use

Qf = Qo + q2BV BT (9.45)

where V can be any positive definite matrix (choose I if you want). The Riccati
equation in (9.44) can be written as

A
S

q2
+

S

q2
AT − q2 S

q2
CT R−1C

S

q2
+ BV BT +

Qo

q2
= 0. (9.46)

From basic properties of Riccati equation, if the nominal system is
minimum-phase and left invertible, then

q → ∞ =⇒ S

q2
→ 0 (9.47)

and furthermore, along the lines of equation (9.8)

F = SCT R−1 → qBV
1
2 UR− 1

2 = qBW (9.48)

for some nonsingular W , as desired. So the method boils down to the following
easy to use, NASA approved bullet chart

• Design the LQR such that KG has the appropriate loop shape

• Check loop shape after adding the nominal observer
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• Increase q in (9.45) and (9.46), to recover the LRQ loop, pointwise in the
frequency domain

Almost everything here can be done with the dual problem. When uncer-
tainty (and disturbances) are best modeled by multiplicative uncertainty at the
output, the approach is to design the filter so that GK has the desired shape.
Then by manipulating the control Riccati equation recover the loop. We can
now present the last bullet chart regarding the short comings of the LTR process

• Requires minimum phase property

• Uncertainty either at the input or at the output

• Can only recover the loop through high gains (i.e., asymptotically)
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9.5 PROBLEM SET

Exercise 9.3. Make sure you can follow the steps from (9.5) and (9.6). Also,
why is the right hand side of (9.6) greater than or equal to the identity matrix
for s = jw, for all w?

Exercise 9.4. show how (9.6) implies that (9.12) holds.

Exercise 9.5. The conditions in (9.9) are claimed to cause any loss of gener-
ality. Can it be true?

Exercise 9.6. Show i: (9.28) holds, ii: (9.39) and (9.40) hold, and iii: (9.48)
holds.

Exercise 9.7. Is the following identity true?

(sI − A + FC)−1 = [I + (sI − A)−1FC]−1 (sI − A)−1

Exercise 9.8. Recall that we had KLQG = −K(sI −A+BK +FC)−1F . Show
that this is the same as

KLQG = [I + K(sI − A + FC)−1B]−1K(sI − A + FC)−1F

13



10 Numerical Linear Algebra and Control

10.1 LMI

A Linear Matrix Inequality (LMI) has the following form:

F (x) = Fo +
m

∑

i=1

xiFi > 0 (10.1)

where x ∈ Rm is the unknown variables and Fi for i = o, 1, . . . m are known
symmetric matrices. This whole chapter is due to the fast that now we have
efficient, easy to use , software that can solve for x, once Fi are given, basically
because once the variable enters linearly of affinely, the search is convex. The
software is actually available via the LMI ToolBox of Matlab.

While a course in optimization is the proper place to study this, for now all
we need are a couple of facts:

• If the variables enter linearly, the search is convex

• If the search is convex, LMI tool box will find a solution if one exists

We can have matrices in (10.1), as everything will follow - as long as the
unknown matrix variables enter linearly. For example, consider the search for
P > 0, such that −T = PA + AT P < 0 (for simplicity, let us do the case of
dimension 2)

P =
[

p1 p2

p2 p3

]

= p1

[

1 0
0 0

]

+ p2

[

0 1
1 0

]

+ p3

[

0 0
0 1

]

> 0

or using a notation similar to (10.1)

P = p1E1 + p2E2 + p2E3 > 0 (10.2)

where the notation is obvious. Now we can write

PA + AT P = p1(AT E1 + E1A) + p2(AT E2 + E2A) + p3(AT E3 + E3A) < 0

combining the two conditions (on P and PA + AT P ), we get the following

3
∑

i=1

pi

[

−AT Ei − EiA 0
0 +Ei

]

> 0

which clearly is in the form of (10.1) - without F0! Clearly, as long as you have
linear appearance in the unknown matrix or scalar variables, we can do this
trick. Note how we combined 2 different conditions into 1 (i.e., several LMI’s
in which the unknown appears linearly or affinely is still a convex problem).
Fortunately, this kind of tedious manipulation is done by Matlab!
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A related problem is the following

minimize cT x subject to F (x) > 0 (10.3)

where cT is the selection vector and x is the vector of unknowns. This is also a
problem Matlab solves (though the ‘mincx’ function), though you probably can
think of a way to solve it iteratively too.

The availability of LMI tool box (due to much progress in numerical linear
algebra) has led to tremendous progress in control design - which is the main
reason we have this chapter! Roughly speaking, we study different analysis and
synthesis problem and manipulate things enough until they are in the form of
either (10.1) or (10.3). Then we declare the problem solved (if there is a solution,
Matlab will solve it).

10.2 Schur Complement

Let

A =
(

Q S
ST R

)

(10.4)

Then, the following are equivalent:

•

A > 0 ⇐⇒







Q > 0
R > 0
Q− SR−1ST > 0

•

A > 0 ⇐⇒







Q > 0
R > 0
R− ST Q−1S > 0

Proof: Clearly, A > 0 implies Q > 0 and R > 0 (use
(

x
0

)

and
(

0
y

)

in

the basic definition of positive definiteness). So we concentrate on the third
property; i.e., given Q > 0 and R > 0, then A > 0 is equivalent to the third
property. Obviously, we only need to do the first form (and the second follows
closely).

We start with a generic vector z =
(

x
y

)

.

zT Az = xT Qx + yT Ry + xT Sy + yT ST x > 0 ∀x, y (10.5)

To show ⇒, we use any x 6= 0 along with y = −R−1ST x to get

zT Az = xT Qx + xT SR−1RR−1ST x− xT SR−1ST x− xT SR−1ST x

= xT (Q− SR−1ST )x > 0 ∀x 6= 0
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thus A > 0 implies that (Q− SR−1ST ) > 0.

To show⇐, we go back to equation (10.5) : Add and subtract a xT SR−1ST x,
to get :

zT Az = xT QX − xT SR−1ST x + xT SR−1ST x + yT Ry + xT Sy + yT ST x

= xT (Q− SR−1ST )x + (yT + xT SR−1) R (y + R−1ST x)

for all x and y. The first term is strictly positive and the second term is in the
form of BT RB with R > 0, so it is as worst zero. Therefore zT Az > 0 ∀z.

What if we had A ≥ 0? The only modification would have been the following:

• If R > 0, then

A ≥ 0 ⇐⇒
{

Q ≥ 0
Q− SR−1ST > 0 (10.6)

• If Q > 0, then

A > 0 ⇐⇒
{

R ≥ 0
R− ST Q−1S > 0 (10.7)

Naturally, everything above follows if we replace all ‘>‘ signs with ‘<’ signs.
That is

•

A < 0 ⇐⇒







Q < 0
R < 0
Q− SR−1ST < 0

(10.8)

•

A < 0 ⇐⇒







Q < 0
R < 0
R− ST Q−1S < 0

(10.9)

Finally, we have the following: IF

C =
(

Q S
ST 0

)

≥ 0 (or ≤ 0) then S = 0 (10.10)

(pick any zT = (xT yT ), show that there exists another vector ẑT = (xT ŷT )
such that the sign of zT Cz is opposite of ẑT Cẑ which is impossible. The only
way out is to have xT Sy = 0 for all x and y which is mean S = 0)
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10.3 S-Procedure

Let To, T1, · · · , Tp be symmetric matrices. If there exists a set of positive scalars
τi > 0 such than

To −
p

∑

1

τiTi > 0 (10.11)

then the following is true

xT Tox > 0 for all x 6= 0 such that xT Tix > 0 ∀ i (10.12)

Clearly, (10.11) implies (10.12) - to see this just multiply (10.11) by xT and
x. We end up using it as a sufficient condition - possibly conservative - by
finding τi such that (10.11) holds. When p = 1, this is sufficient and necessary,
but in general there is some conservatism associated with it.

We often use negative conditions, which are obtained by usingSi = −Ti: Let
So, S1, · · · , Sp be symmetric matrices. If there exists a set of positive scalars
τi > 0 such than

So −
p

∑

1

τiSi < 0 (10.13)

then the following is true

xT Sox < 0 for all x 6= 0 such that xT Six < 0 ∀ i (10.14)

10.4 Ellipsoids

We will use the concept of ellipsoidal sets a great deal. Simply, consider the
following: Given P > 0, we define the following ellipsoid:

E(P, c) = {x : xT Px ≤ c } (10.15)

Naturally, we need P > 0 if we want a bounded set. Let us consider some
of its basic properties:

• x ∈ E(P, c) ⇔ αx ∈ E(P, cα2)

• c1 ≤ c2 ⇔ E(P, c1) ⊆ E(P, c2)

• If P1 ≤ P2 ⇔ E(P2, c) ⊆ E(P1, c)

• ellipsoid not centered at the origin:

E(P, xo, c) = {x : (x− xo)T P (x− xo) ≤ c }
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• The volume of an ellipse is αn(detP−1)
1
2 , where α is the volume of the

n-dimensional unit 2-ball; i.e.,

αn =
πn/2

(n/2)!
if n is even

αn =
2nπ(n−1)/2((n− 1)/2)!

n!
if n is odd

but an upper bound (thus only a potentially conservative estimate) to it
is more suitable for matlab use. For this, recall (??)

(detP )1/n ≤ trace(P )
n

which implies that to minimize volume (thus det(P ) - which is very dif-
ficult), we can try to minimize trace(P−1) or at times trace(Q) where
Q > P−1.

10.4.1 Norm of a vector in an ellipsoid

One of the main tricks we will be using, over and over, is to find the max of
‖y = Cx‖ for all x ∈ E(P, c) (what is the minimum value?). Consider the
following

(

P CT

C γ2

c I

)

> 0 ⇔ P − c
γ2 CT C > 0 (10.16)

Therefore, if this condition (i.e., (10.16)) holds, we have

‖y‖ ≤ γ

10.5 Stability, L2 gain, etc

We now start with the analysis results; i.e., conditions that can be checked
relatively easily and would imply stability, finite gain, etc.

10.5.1 stability

Suppose we have the following dynamics
{

ẋ = Ax
x(0) = xo

(10.17)

One way of checking the stability of A was through Lyapunov method and
Lyapunov equation: finding the solution

PA + AT P = −Q , Q > 0

which means we must have P > 0 such that PA + AT P < 0. This is a simple
search (for P ) which is convex, this easily done with Matlab LMI software.

10–5



10.5.2 H∞ or L2 gain

Suppose we have the following dynamics






ẋ = Ax + B1w
y = Cx + Dw
x(0) = 0

(10.18)

We want to find the L2 or energy gain of the system, ie., the smallest γ such
that

∫ ∞

0
yT y dt ≤ γ2

∫ ∞

0
wT w dt

(this also becomes the famous H∞ problems). The basic approach is to use a
Lyaponuv like function

V (x) = xT (t)Px(t)

where P > 0, and find the smallest γ that satisfies:

T = V̇ (t) + yT y − γ2wT w ≤ 0 (10.19)

since simply integrating both sides from zero to infinity gives the energy (or L2)
gain. Note that this gives an estimate (or upper bound) on the actual gain and
there may be some conservatism.

To get a more tractable form of (10.19), we simply take derivative of V and
substitute:

T = V̇ (t) + yT y − γ2wT w =xT PAx + xT AT Px + xT PBw + wT BT Px

(Cx + Dw)T (Cx + Dw)− γ2wT w

which can be written as

T = (xT wT )
(

PA + AT P + CT C PB + CT D
BT P + DT C −γ2I + DT D

) (

x
w

)

A sufficient condition for (10.19) is this the following
(

PA + AT P + CT C PB + CT D
BT P + DT C −γ2I + DT D

)

< 0 (10.20)

which is the same as the following (doing the Schur complement)
(

PA + AT P PB
BT P −γ2I

)

+
(

CT

DT

)

I (C D) < 0

but using Schur complement formula, this is equivalent to




PA + AT P PB CT

BT P −γ2I DT

C D −I



 < 0. (10.21)
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A sequence of pre and post multiplying by





1/
√

γ 0 0
0 1/

√
γ 0

0 0
√

γ



, and

using P̂ = P/γ yields




P̂A + AT P̂ P̂B CT

BT P̂ −γI DT

C D −γI



 < 0. (10.22)

There is another - equivalent - form that is used in the synthesis problems.
That form is obtained by pre and post multiplying (10.22) for example, by




Q 0 0
0 I 0
0 0 I



 where Q = P̂−1, results in





AQ + QAT B QCT

BT −γI DT

CQ D −γI



 < 0. (10.23)

Often we see references to Bounded Real Inequality, which could be any of
the above. In particular, (10.20) can be written (doing a Schur complement) as

PA + AT P + CT C + (PB + CT D)(γ2 −DT D)−1(BT P + DT C) < 0 (10.24)

or if D = 0, the simple form of

PA + AT P + CT C +
1
γ2 PBBT P < 0. (10.25)

In all of these problems (i.e., (10.20)-(10.23) ), we seek a positive definite
matrix (P or Q) so that the linear matrix inequality - in which the variable P
enters linearly- is satisfied. This is a standard convex search and LMI toolbox
can be used to solve for it. Furthermore, we would like to minimize γ. Again,
this ends up being a convex problem (generalized eigenvalue problem) for which
matlab can be used easily (if nothing else, think of matlab solving this mini-
mization problem as a sequence of feasibility problems with decreasing values
of γ which should converge to any tolerance in finite steps).

10.5.3 Invariant/Reachable sets

Consider the system in (10.18). Let us try to find some estimates for the reach-
able set or the invariant set. The reachable set (from zer) is the set of points
the state vector can reach with zero initial condition, given some limitations on
the disturbance. The invariant set is a similar (but not identical necessarily)
concept. The invariant set is the set that the state vector does not leave once it
is inside of it, again given some limits on the disturbance. (which one of then is
stronger, so to speak, why?). Generally, these are hard to characterize (as you
might have seen in the exam before!).
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We discuss both types, depending on the form of the disturbance bound. In
all case, we use a Lyapunov function and an ellipsoidal sets for this estimate;
i.e., our estimates are in the following form

E = {x : V (x) = xT Px ≤ c}

Obviously, there are varying degrees of conservatism associated with these, but
as you will see, they are easy to obtain and can be applied to nonlinear systems
as well.

Case A:Energy Bounded Disturbance:

Suppose the disturbance w had a energy bound;
∫ ∞

0
wT w dt ≤ w2

max

then if we can find P such than

V̇ − wT w ≤ 0 (10.26)

then the reachable set is V (x) ≤ w2
max. To see this, simply integrate (10.26)

from zero to t

V (t)− V (0)−
∫ t

0
wT w dt ≤ 0

With zero initial conditions, we have

V (x) = xT Px ≤
∫ t

0
wT w dt < w2

max

which can also be refined as

‖x‖2 <
1

λminP
w2

max.

In any case, to find the V or P , we expand the V̇ term in (10.26); i.e., we seek
P such than the following holds

xT PAx + xT AT Px + xT PBw + wT BT Px− wT w < 0

where this is the same as

(xT wT )
(

PA + AT P PB
BT P −I

) (

x
w

)

< 0

As a result, we have the following estimate (sufficient condition): Suppose there
is P > 0 satisfying

(

PA + AT P PB
BT P −I

)

< 0 (10.27)
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then an estimate of the reachable set is

E = {x : xT Px ≤ w2
max}

Case B: Peak Bounded Disturbance:

Suppose we have a bound on the peak norm of the disturbance:

wT (t)w(t) ≤ w2
max ∀t

Note that if you are interested in element wise peak norm, you might be off by
a factor of

√
m where m is the dimension of w. Here the basic condition is the

following: Suppose there was a P for a V = xT Pc such that

V̇ + α(V − wT w) < 0 (10.28)

for some α > 0. Then V ≤ w2
max is an attractive invariant set (i.e., if you start

from inside, you never leave, and if you start from outside, you get attracted to
it!). It is not that important perhaps, but α come from the S-procedure (setting
the problem up as having V̇ < 0 where V > wT w). It is relatively easy to see
that (10.28) implies that

V̇ + α(V − w2
max) < 0

which implies that if you are insider of V ≤ w2
max you cannot go outside and if

you are outside, V gets smaller - until you get inside! Going through the same
calculations as before we get the following conditions for P :

(

PA + AT P + αP PB
BT P −αI

)

< 0 (10.29)

then an estimate of the reachable (and/or invariant) set is

E = {x : xT Px ≤ w2
max}

Note that in this case, the term αP is nonlinear in unknown variables, which
destroys the convexity. Generally, a simple line search (ie, iterative) is done on α.
This is not a major problem, since the (1,1) block of the inequality above shows
that α is between zero and half of the real part of the least stable eigenvalue of
A (why?).

10.5.4 Energy to peak and peak to peak gains

To obtain (upper) bounds for the energy-to-peak or peak-to-peak gains for a
system, we simply combine the previous subsection results with those regarding
the norm of a vector in the ellipsoid:

• Energy to Peak norm: Suppose (10.27) and (10.16) hold for some P ,
γ = γ∗ and c = 1, then it is easy to see that xT Px ≤ 1 is the reachable
set, as long as ‖w‖L2 ≤ 1. Then, (10.16) implies that the norm of y is less
than γ∗ in this ellipsoid.
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• Peak to Peak norm: Suppose (10.29) and (10.16) hold for some P ,
α > 0, γ = γ∗ and c = 1, then it is easy to see that xT Px ≤ 1 is the
reachable set, as long as ‖w(t)‖ ≤ 1. Then, (10.16) implies that the norm
of y is less than γ∗ in this ellipsoid.

As a result, we solve for P > 0, such that the LMI’s holds, while minimizing
γ∗.

10.6 Synthesis

Suppose our system is in the follwoing form

ẋ = Ax + B1w + B2w (10.30)

z = C1x + D11w + D12u (10.31)

y = C2x + D21w + D22u (10.32)

where w is the disturbance and u is the control input. Vector z is called con-
trolled output, and contains states or combinations that we want to penalized
or reduce, etc (which may be the same or different from the measured output y).
Almost always, we use D22 = 0, to simplify things (well posed problem issue).
Often it is justified through a simple transformation of the form ŷ = y −D22u
- as long as u is available.

Throughout this long subsection, we will try the synthesis problem: i.e,
finding a control law - with different structures - such that the closed loop has
desirable properties (e.g., stability, small L2 gain, small peak to peak gain, etc).

10.6.1 State Feedback Controllers

Suppose you are designing a state feedback controller of the form

u = Kx (10.33)

Putting it back in the original equation of motion (i.e., (10.30)), yields the
following closed loop equation:

ẋ = (A + B2K)x + B1w (10.34)

z = (C1 + D12K)x + D11w (10.35)

We try to do the problem of stabilizing controller only; i.e., when w = 0.
Other considerations, such as minimizing the L2 gain of the closed loop or the
energy to peak or peak to peak gains are quite similar, and left as exercise.

We start by hoping to find a matrix P such that a Lyapunov funcation
candidate of the of form

V (x) = xT Px
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can do the trick. For this V (x) to work, we need V̇ (x) < 0; i.e.

P (A + B2K) + (A + B2K)T P = PA + PB2K + AT P + KT BT
2 P < 0 (10.36)

The problem is the PB2K term, which is nonlinear in the unknown variables
(i.e., not a linear matrix inequality, thus not a convex search and no LMI-
toolbox!). Fortunately, there is a little trick that solves this dilemma. Use

W = KP−1 = KX (10.37)

and note that pre- and post multiplying (10.36) by X = P−1 we get the following
sufficient condition

AX + XAT + B2W + WT BT
2 < 0 (10.38)

which is now linear in X and W . So we use LMI-toolbox (or any similar pro-
gram) to find W and X > 0 that satisfy (10.38). Then the control law (from
(10.37)) is

K = WX−1.

10.6.2 Output feedback design

Now suppose we do not have access to all of states and instead had access to :






ẋ = Ax + B1w + B2u
z = C1x + D11w + D12u
y = C2x + D21w

(10.39)

Where, as before, we have assumed that there is no feed-through term from u
to y. We need to design a compensator of the form:

{

ẋc = Acxc + Bcy
u = Ccxc

(10.40)

Combining the two, we get the closed loop dynamics of
{

ẋcl = Aclxcl + Bclw
z = Cclxcl + Dclw

(10.41)

where xT
cl = ( xT xT

c ) and

Acl =
(

A B2Cc

BcC2 Ac

)

, Bcl =
(

B1

BcD21

)

and
Ccl = (C1 D12Cc) , Dcl = D11

Now let us discuss stability only (L2 and stuff follows pretty similar to this)
- so we set w = 0. For stability, it is sufficient to have P > such that

PAcl + AT
clP < 0
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or using Q = P−1, if we could find Q > 0 such that

AclQ + QAT
cl < 0 (10.42)

where the dimension of Q is 2n× 2n; i.e, has a structure

Q =
(

Q1 Q2

QT
2 Q3

)

(10.43)

Now we can say, without any loss of generality that Q2 is non-singular (one can
always add a little bit to it; e.g., Q2 = Q2 + εI so that the off-diagonal terms
is non-singular without changing Q > 0 or the overall inequality in (10.42)).
Once this is done, we can show that any matrix in the form in (10.43) - with
Q2 nonsingular, can be transformed to the following:

TQTT =
(

X X
X S−1 + X

)

, , T = diag{I, T1}

for some appropriately defined T1. Naturally, T1, X and S are functions of Qi !
Furthermore, it is relatively easy to show that this transformation only changes
the ‘realization’ of the compensator and nothing else. In summary, we can -
without any loss of generality, say that if (10.42) has a solution Q, it has the
form

Q =
(

X X
X S−1 + X

)

(10.44)

Next, we define

Y = S + X−1 =⇒
(

X X
X S−1 + X

)−1

=
(

Y −S
−S S

)

and go back to (10.42) and pre and post multiplying it (i.e., congruent trans-
formation) by T2 and T3, respectively, where

T2 =





T3 0 0
0 I 0
0 0 I



 , T3 =
(

Y −S
I 0

)

After a good bit of manipulations, we get the following - from (10.42):�
Y A + AT Y − SBcC2 − CT

2 BT
c S Y [A + B2Cc]X − S[Ac + BcC2]X + AT

∗ AX + XAT + B2CcX + XCT
c BT

2

�
< 0

(10.45)

The inequality above does not ‘look’ linear, but if we use the following

Wc = CcX

Wo = −SBc

L = Y [A + B2Cc]X − S[Ac + BcC2]X = Y AX + Y B2Wc − SAcX + WoC2X
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we get

(

Y A + AT Y + WoC2 + CT
2 WT

o L + AT

LT + A AX + XAT + B2Wc + WT
c BT

2

)

< 0

(10.46)
which is linear in X, Y, Wo,Wc and L. Once these are found (by LIM-

toolbox!) we get the compensator from the following

Cc = WcX−1 (10.47)

Bc = −S−1Wo (10.48)

Ac = S−1(−LX−1 + Y A + Y B2Cc)−BcC2 (10.49)

Actually, X and Y should be such S = Y −X−1 > 0 - which through Schur
is equivalent to

(

Y I
I X

)

> 0 (10.50)

In summary, the compensator is obtained by searching for the unknown
variables that satisfy (10.46) and (10.50) (and then Ac etc from (10.47))

10.7 Multi-objective problems

The basic idea of multi-objective approach is to design a controller such that
two (or more) different objectives are met. Consider the state feedback problem
we discussed earlier, the closed loop is

ẋ = (A + B2K)x + B1w (10.51)

z = (C1 + D12K)x (10.52)

where we have set D11 = 0. So suppose we needed to find K such that the L2

gain from w to z was less than γ2 while minimizing the energy to peak gain γ∗

for disturbances with unit energy- again from w to z - to have bounded energy
in z while minimizing peak. Following the development of earlier sections, these
objectives will be satisfied if





P̂Acl + AT
clP̂ P̂Bcl CT

cl
BT

clP̂ −γI DT
cl

Ccl Dcl −γI



 < 0 (10.53)

for the desired γ2, while the second objective is to minimize γ∗ in
(

PAcl + AT
clP PBcl

BT
clP −I

)

< 0 (10.54)

(

P CT
cl

Ccl (γ∗)2I

)

> 0 (10.55)
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Recall that in this case, an estimate of the reachable set is

E = {x : xT Px ≤ w2
max = 1}

Now the most general result would be that the two objectives would be met
by two different P , one for each objective, but as you recall each problem will
result in a search for P and W = KP−1. Since we want only one controller, we
need to have K1 = W1P−1

1 = W2P−1
2 which kills any convexity we might have!

What is done is to use the same P in both objectives (which means the same
W ). This allows us to solve the problem but can be quite conservative. Dealing
with this conservatism is an active area of research.

10.8 Time variations and mild nonlinearities

One of the advantages of using Lyapunov functions, as mentioned earlier, is
that the basic approach (including reliance on LMI) can be extended to certain
class of time varying and/or nonlinear systems - with relative ease. We will do
a little bit of review of these things.

First, however, we need to look into the concept of Quadratic Stability. If
a dynamical system is shown to have Lyapunoc function V that is quadratic in
x such that V̇ < −ε‖x‖2, then the system is quadratically stable (QS) - which
is stronger that asymptotic stability (e.g., we can show exponential decay). The
simplest form of V - you guessed it - for this method is V = xT PX for some
P > 0. As you recall, for linear time invariant (LTI) systems this was equivalent
to traditional stability (checked with eigenvalues), except quadratic stability can
be extended to more general systems.

10.8.1 Robustness and quadratic stability

Consider the simple mass, spring dashpot model

mÿ + cẏ + ky = u

or
(

ẏ
ÿ

)

= ẋ =
(

0 1
− k

m − c
m

)

x +
(

0
1

)

u = Ax + Bu

If stiffness or damping where unknown (either constant or slowly changing).
Then we can start with V (x) = xT Px and establish stability (e.g., when u = 0),
or L2 gain (when u is disturbance) or even design control. For than we typically
mean to find P satisfying

PA(q) + A(q)T P < 0

where A(q) denotes dependence of A on the unknown parameter q - for example
k = knom +q. Now this last inequality still forms an LMI as long as dependence
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of A(q) on q is linear. In particular, obtaining a P satisfying it follows if we had
a P satisfying

PA(qmin) + A(qmin)T P < 0 and PA(qmax) + A(qmax)T P < 0

These lead to sufficient conditions for robust stability, but they could be
conservative. For LTI systems, the famous µ-synthesis leads to much less con-
servatism, but QS method also applies if the uncertainty is time varying (though
how fast is another story!)

10.8.2 Linear parameter varying systems

Linear parameter varying systems are those systems whose model is time vary-
ing, but linear and the variation is keys to a (or few) specific parameter - which
is supposed to be measured on-line. There is a lot of similarities to gain schedul-
ing (which is a whole new can of warms). A particularly interesting form of this
is the quasi-lpv. For example, consider the simple pendulum model

θ̈ + sin θ = u

or in state space form (with xT = (θ θ̇)T ), or

ẋ =
(

0 1
− sin x1

x1
0

)

x +
(

0
1

)

u = A(ρ)x + Bu

where ρ(x) = sin x1
x1

, which leads to 0 ≤ ρ ≤ 1. Now, if we measure x1 = θ,
then we have ρ(t) on-line! Note that model here has a lot of similarities with
the robust problem discussed above, with one difference: in robust problem we
doe not know the values of q - ever! In the q-lpv (or lpv) however, knowing the
parameter can help us do a better job. For example, suppose you had limited
torque for the pendulum. If you only had one K, this had to be chosen so that
no matter what x, Kx ≤ ulim. However, you could different K’s , as θ gets
smaller, you would use a larger K and thus can be more aggressive!

The approach - i,e, finding K(ρ) - is quite similar to gain scheduling and at
times is called self-scheduling (it is scheduled based on its own response! and
not external command). This is an area of research that has been quite active
in recent years.
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10.9 Exercises

1. Show the first three properties of ellipsoids are trues

2. Show (10.16) actually does bound the norm of y

3. Show that γT −DT D > 0 ⇔ σmaxD < γ

4. Verify the equivalency of (10.21) and (10.22)

5. Consider the invariant set for the peak bounded disturbance (e.g., (10.29)).
Show that if x is not insider this set, it will reach it (i.e., contractive).
Estimate the rate of convergence!

6. For the peak bounded case, use S-procedure to some up with matrix in-
equality for the norm of y = Cx + Dw.

7. Beyond stability: How would you modify the Lyapunov inequality if we
needed x(t) to decay as least as fast as e−αt?

8. Do the estimate for peak to peak and energy to peak if the appropriate
norm of w(t) was bounded by wmax instead of 1.

9. In (10.30, what would be z if we wanted to penalize absolute acceleration
of a single mass-spring dashpot plus an actuator?

10. In the state feedback problem, do the L2 problem: Find u = Kx such
that the closed loop L2 gain is minimized.

11. In the output feedback case, show the details needed to establish that the
special structure of Q is without loss of generality - including the change
of controller representation.

12. I the output feedback case, do the L2 gain minimization problem !

13. Filling some intermediate steps: mincx vs trial and error: solve the mini-
mum γ in one of the minimization problem by ‘mincx’ function and then
get the same by checking feasibility with decreasing values of γ

14. Important: In the multi-objective problem, solve the following: Given w
with energy wmax, minimize the L2 gain subject to the saturation bound
ulim
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