
Automatici Strike Back Compilation date: 02/Jun/2025

Joint Space
From the first lab I understood that we needed a rectangle in workspace but then it turned out
we needed it in joint/configuration space.

We can do in two ways:

1. Sample the workspace, whenever we have an admissible configuration we save the joint
configuration and plot it at the end. This solution re-uses the inverse kinematics code

2. Sample the joint space, if the direct kinematics is admissible with respect to some criteria
save the pose, plot it at the end.

With 1 it’s possible to save some time thanks to the code re-use but an uniform sampling in
workspace doesn’t translate well in joint space, leading to some artifacts that require a more
fine-spaced sampling with more cumbersome calculations.

With 2 we need to write the direct kinematics function but the end result is more efficient.

1) Direct Kinematics
Let’s start with a generic configuration of our active joints:

If the configuration admits a solution it will have up to two possible passive joints configu-
rations.

1

Automatici Strike Back Joint Space

In our case we are only interested in the “green”.

To differentiate the two possible solutions we draw a line between the two passive joints (yellow
line). The middle point is our point C. The distance between C and E (call it ℎ) is trivially
calculated with the Pythagorean theorem.

By starting from C we add a vector of size ℎ and direction orthogonal counter-clockwise to
𝑃2 − 𝑃1

By knowing the end-effector pose we can retrieve the passive joints configuration.

2) Singularity crossings
We demonstrated how to solve the forward kinematics in the first case.

2

Automatici Strike Back Joint Space

But if we apply this algorithm in the third case we’ll end up with the red dot instead of the
green dot.

Is it really a problem?

If you think about it, going from the green configuration in the first case to the green configu-
ration in the third case is impossible because you have to cross a singularity. The same happens
if you want to go from the green first case to the red third case. (hint: you have to align the
two right links to reach the left border of the vesica piscis found in the workspace singularity
analysis).

3

Automatici Strike Back Joint Space

Our focus now should be to detect the third case and categorize it as an inadmissible configu-
ration.

4

Automatici Strike Back Joint Space

2.1) Invariants

In the third case the direct kinematics algorithm finds the red configuration instead of the green
configuration.

What’s the difference between them?

First case

𝜃𝑝1 is counter-clockwise to 𝜃𝑎1

𝜃𝑝2 is counter-clockwise to 𝜃𝑎2

Second case

𝜃𝑝1 is counter-clockwise to 𝜃𝑎1

𝜃𝑝2 is clockwise to 𝜃𝑎2

5

Automatici Strike Back Joint Space

2.1.a) Why does it happen?
To pass between those two configurations you need to fully extend the links of one side to reach
the “vesica piscis” border. In this configuration on one side (either left or right) you have the
active and passive joints perfectly aligned. From there you “invert” the the relative rotation
and you can reach the red configuration.

You can see the external borders of the workspace like some sort of “portal” that allows you to
switch between the two possible direct kinematics.

3) Algorithm
1 for every sampled (𝜃a1, 𝜃a2) in joint space
2 calculate position of 𝑃1 and 𝑃2
3 if distance(𝑃1,𝑃2) < 2L then
4 𝑥, 𝑦, 𝜃𝑝𝑖 ← directKinematics(𝜃a1, 𝜃a2)
5 if counter-clockwise_check() is true then
6 return Pose = (𝑥, 𝑦, 𝜃𝑝𝑖)
7 else
8 return RedConfigurationError
9 end

10 else
11 return DistanceError
12 end
13 end

4) Result

X-axis = 𝜃𝑎1, Y-axis = 𝜃𝑎2 in radians

Blue = admissible

6

Automatici Strike Back Joint Space

Red = you have to cross a singularity to reach it.

Orange = you have to break the links to reach it.

Zooming in we can pick the joint bounds

I settled on:

𝜃𝑎1 = [−20° , 17 °] = [−0.36rad , 0.314rad]

𝜃𝑎2 = [68° , 122 °] = [1.204rad , 2.14rad]

5) Simulink Implementation
Test of trajectory around the safety bounds.

7

Automatici Strike Back Joint Space

8

Automatici Strike Back Joint Space

(Plot of trajectory in workspace)

Once we set-up a safety bound we can decide what happens when it’s crossed:

We can virtually saturate the control voltage to slow it down and let us intervene or we can
directly stop the machine.

My proposal is to have a “tiered” safety system:

• Inside the safe bounds we use the nominal voltage limits (10V amplitude) (0th zone)

• In a small area around it (10° ?) we reduce the voltage limits to slow it down. (1V or 2V
amplitude ?) (1st zone)

• Outside this we just give 0V and have a safe shutdown for 1 (?) second to get some debug
traces. (2nd zone)

9

Automatici Strike Back Joint Space

(safety bounds not for scale, we have to decide)

Imagine this as a racetrack where in the 0th zone you can drive freely, in the 1st zone you are
slowed down for safety but you can still make it back, and the 2nd zone is a no-go.

5.1) Low level safety systems.
Going forward we are going to complicate the Simulink scheme a lot so my proposal is to
implement all the safety checks in one block that we are going to reuse every time we want to
interface with the target plant.

10

Automatici Strike Back Joint Space

Example of a generic control scheme: the intrinsic safety measures don’t clutter the high-level
design.

All the interesting signals of the plant are muxed to be able to connect to the logger with a
single cable. We can always add other signals from the controler with a muxer afterwards.

As a quick reference here is the index of all the signals.

muxer id .mat row Name Unit Description

1 2 ENC0 / Y0 rad angular distance from rest position

2 3 ENC1 / Y1 rad angular distance from rest position

3 4 U0 V voltage requested by control law (copy
of input signal)

4 5 U1 V voltage requested by control law (copy
of input signal)

5 6 U0_SAT V actual voltage provided to actuator after
saturation (for anti-windup)

6 7 U1_SAT V actual voltage provided to actuator after
saturation (for anti-windup)

7 8 EC0 / Error code for joint 0

8 9 EC1 / Error code for joint 1

11

Automatici Strike Back Joint Space

Schematics of the safety system.

Copy of the code in the function block:

function y = test_bounds(u, upper_0, lower_0, upper_1, lower_1)
% 0 = everything ok , 1 = low voltage , 2 = shutting down
if u<upper_0 && u>lower_0
 y = 0;
elseif u<upper_1 && u>lower_1
 y = 1;
else
 y = 2;
end

12

	Direct Kinematics
	Singularity crossings
	Invariants
	Why does it happen?

	Algorithm
	Result
	Simulink Implementation
	Low level safety systems.

