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Kalman Filter design
1) Theory
We assume that our model in continuos time is:

{ ̇𝑥 = 𝐴𝑥 + 𝐵𝑢 + 𝑤
𝑦 = 𝐶𝑥 +𝐷𝑢 + 𝑣 1.

𝑥 = [𝜃𝜔], 𝑢 = 𝑣 2.

With A,B,C all fully identified and D = 0

With all the independence assumptions about 𝑤 and 𝑣. (Z = 0)

𝑤 ∼ 𝒩(0,𝑄)
𝑣 ∼ 𝒩(0,𝑅)

𝑄 = [
𝜎2𝜃
𝜎2𝜃,𝜔

𝜎2𝜃,𝜔
𝜎2𝜔

]

𝑅 = [𝜎2encoder]

3.

The system in discrete time is:

{𝑥(𝑘 + 1) = 𝐴𝑥(𝑘) + 𝐵𝑢(𝑘) + 𝑤
𝑦(𝑘) = 𝐶𝑥(𝑘) + 𝑣

4.

With

𝐴 = 𝐼 + 𝐴 ⋅ Δ𝑡
𝐵 = 𝐵 ⋅ Δ𝑡
𝐶 = 𝐶

5.

1.1) Problem
How do you calculate Q and R?

1.1.a) R matrix
Assuming that the discretization from the encoder is the only noise corrupting our “true” 𝜃 we
can see 𝑣 as a gaussian noise with zero mean and standard deviation of 𝜎enc = LSB√

12 = 2 𝜋
4096

√
12  .

2) The literature
Taken from “Kalman and Bayesian Filters in Python” (Link).

2.1) Chapter 7.3.2
Ignoring the control we can rewrite our state equation as:

̇𝑥 = 𝐴𝑥 + Γ𝛼 6.

With Γ = [01] and 𝛼 = �̇� describing the acceleration of the angle caused by “something” (control,
disturbances, noise, whatever).

Assuming to have a constant acceleration in our sampling period we can discretize it as:
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𝑥(𝑘 + 1) = 𝐴𝑥(𝑘) + Γ𝛼(𝑘) 7.

With

Γ = [
1
2Δ𝑡2
Δ𝑡

] 8.

The covariance of this process will be:

𝑄 = Γ𝜎2𝜔Γ𝑇 9.

For 𝜎𝜔 just use the rule of thumb:

𝜎𝜔 ∈ [
1
2
, 1]𝛼max 10.

𝛼max can be estimated from the model, simply assume feeding the max voltage to the motor.

This a good starting point but it has a big drawback: it doesn’t use the experimental data.

2.1.a) Approximation from 7.3.4
We can see that Q will have the form:

𝑄 = [
1
4Δ𝑡4
1
2Δ𝑡3

1
2Δ𝑡3
Δ𝑡

]𝜎2𝜔 ≈ [00
0

𝜎2𝜔Δ𝑡
] 11.

In continuos form:

𝑄 ≈ [00
0
𝜎2𝜔
] 12.

This is suggesting to us that instead of a diagonal matrix we can focus on a lower triangular
matrix. And that we need to estimate only one parameter.

Intuitively this make sense, in fact every source of noise will primarily affect the speed (disturH
bances on the voltage source, disturbances due to the nonlinearity of friction, disturbances due
to the motion of the arm etc. all can be seen as a torque disturbance on the shaft, which will in
turn act as a noise for the speed). Disturbance for the angle do exists (think about backslash or
flexibility of the shaft) but they are not a problem for our case. They are also already accounted
for in the R matrix.

2.2) “Autocovariance Least-Squares” (ALS) & “Optimized Kalman Fil-
ter” (OKF)

From: [ https://en.wikipedia.org/wiki/Kalman_filter#Estimation_of_the_noise_
covariances_Qk_and_Rk ]

These two methods are respectively described as:

Extensive research has been done to estimate these covariances from data. One practical
method of doing this is the autocovariance leastHsquares (ALS) technique that uses the
timeHlagged autocovariances of routine operating data to estimate the covariances.

— Wikipedia
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Another approach is the Optimized Kalman Filter (OKF), which considers the covariance
matrices not as representatives of the noise, but rather, as parameters aimed to achieve
the most accurate state estimation.

— Wikipedia

Given these “general outlines” I propose this method:

1 take a reasonable range for 𝜎2𝜔
2 iterate over the possible range and for each 𝜎2𝜔:
3 Build Q as in Equation 12
4 Calculate the optimal Kalman Gain given the system + R + Q
5 Simulate the discrete time Kalman Filter with the data from the open loop experiments
6 Calculate the error of the prediction
7 Calculate the autoHcovariance of the prediction error (residuals)
8 end
9 Check if any of the autocovariances is “acceptable”

10 Pick the 𝜎2𝜔 with the “best” autocovariances

A lot of stuff going on there:

• How do you define an autocovariance as “acceptable”

• How do you compare them to find the best?

For now let’s see what the error autocovariance looks like:

The autoHcovariance (like the autocorrelation) has value 1 for lag = 0 and < 1 for everything
else. It’s also symmetric.

For clarity I forced the 0Hlag to 0 (it will also be useful later when calculating the norm).

A signal is a whiteHnoise if the autocorrelation is 0 for every lag value different from 0. This
is unreasonable in the real world so a generally accepted whiteness test usually checks if the
autocorrelation is bounded betwen ±0.2 for lags different from 0.

• For 𝜎2 = 0.01 we can see how the Kalman Filter does a bad job at predicting, with an almost
flat autocovariance.
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• For 𝜎2 = 1 the quality improves but it’s still not acceptable.

We can plot the results in between:

We see that at around 𝜎2 = 0.1 the shape is almost flat:

This indicates that our Kalman Filter is able to extract as much information as possible from
the data for this specific Q.

We can further optimize it by calculating the L2 norm of the residuals and picking the lowest
value.
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Repeating this for multiple dataset we see that the “optimal” 𝜎2 doesn’t change that much.

But we still have a small difference between motors.

This was expected due to the effects noticed while experimenting (drifting).

2.2.a) Example of Kalman Filter with optimal Q:
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